

Lecture Notes in Computer Science 4746
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andrea Bondavalli Francisco Brasileiro
Sergio Rajsbaum (Eds.)

Dependable
Computing

Third Latin-American Symposium, LADC 2007
Morelia, Mexico, September 26-28, 2007
Proceedings

13

Volume Editors

Andrea Bondavalli
Università di Firenze, DSI
Viale Morgagni 65, 50134 Firenze, Italy
E-mail: bondavalli@unifi.it

Francisco Brasileiro
Universidade Federal de Campina Grande
Departamento de Sistemas e Computação, Laboratório de Sistemas Distribuídos
Av. Aprígio Veloso, 882 - 58.109-970, Campina Grande, PB, Brazil
E-mail: fubica@dsc.ufcg.edu.br

Sergio Rajsbaum
Universidad Nacional Autónoma de México (UNAM), Instituto de Matemáticas
Ciudad Univesitaria, D.F. 04510, México
E-mail: rajsbaum@math.unam.mx

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.3, C.4, B.1.3, B.2.3, B.3.4, B.4.5, D.2.4, D.2.8,
D.4.5, E.4, J.7

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-75293-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75293-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12167449 06/3180 5 4 3 2 1 0

Foreword

The Latin-American Symposium on Dependable Computing, LADC, is the main
Latin-American event dedicated to the discussion of the many issues related to
dependability in computer systems and networks. It is a forum for researchers
and practitioners from all over the world to present and discuss their latest results
and experiences in this field. LADC 2007, the third edition of this event, followed
on the success of LADC 2005, which took place in Salvador, Bahia, Brazil, and
LADC 2003, which took place at the Polytechnic School of the University of São
Paulo.

LADC 2007 was co-located with the Mexican Annual Computing Conference
(ENC), and AdHoc NOW 2007. It was organized by Universidad Autónoma
Metropolitana (UAM) and Universidad Nacional Autónoma de México
(UNAM). It was co-sponsored by the Brazilian Computer Society (SBC), the
Mexican Society for Computer Science (SMCC), and IEEE TC on Dependable
Computing and Fault Tolerance. It was organized in cooperation with IFIP
Working Group 10.4 ‘Dependable Computing and Fault Tolerance,’ the Chilean
Computer Science Society (SCCC), and the Argentine Society for Informatics
and Operations Research (SADIO). LADC 2007 included the following activities:

– Five Technical sessions: Fault-Tolerant Algorithms, Software Engineering of
Dependable Systems, Networking and Mobile Computing, Experimental De-
pendability Evaluation, Intrusion Tolerance and Security

– Two keynote speeches: Philip Koopman (CMU, USA), Jean Arlat (LAAS-
CNRS, France)

– Three tutorials: Lorenzo Alvisi (UT Austin, USA), Eduardo B. Fernandez
(FAU, USA), Marco Vieira and Henrique Madeira (U Coimbra, Portugal)

– Two panels, chaired by: Henrique Madeira (U Coimbra, Portugal), Rogério
de Lemos (U Kent, UK). The latter was a joint panel with AdHoc NOW
2007.

We would like to thank the LADC 2007 Organizing Committee and the sup-
port staff of ENC 2007 for having helped us with the organizational tasks, the
Steering Committee for their advice, and the Program Committee Co-chairs for
their cooperation. Special thanks go to Rogério de Lemos, who was a source
of constant support and suggestions. Additionally, we would like to thank the
invited guests, all the authors of submitted papers, the sponsoring partners, and
Springer for accepting to publish the LADC proceedings in the LNCS series.

We hope all present at LADC 2007 enjoyed the symposium and their stay in
Morelia.

September 2007 Sergio Rajsbaum

Preface

The Latin-American Dependable Computing Conference is in its third edition.
LADC is the major Latin-American event dedicated to discussing the many is-
sues related to computer system dependability. This symposium succeeded the
well-established Brazilian Symposium on Fault-Tolerant Computers. Its objec-
tive is to provide a forum for international and Latin-American scientists and
engineers to present their latest research results and application experience in
this very dynamic field. The first LADC was held in São Paulo, Brazil, in Octo-
ber 2003, while the second was held in Salvador, Brazil, in October 2005. In its
third edition the symposium took place in Morelia, Mexico.

This edition of LADC was co-organized by the Universidad Nacional
Autónoma de México (UNAM) and the Universidad Autónoma Metropolitana
(UAM). It was co-sponsored by SBC—Brazilian Computer Society, SMCC—
Mexican Society for Computer Science, and IEEE TC on Dependable Com-
puting and Fault Tolerance. Furthermore, committees of several global profes-
sional organizations, such as IFIP Working Group 10.4 ‘Dependable Computing
and Fault-Tolerance’, SCCC—Chilean Computer Science Society and SADIO—
Argentine Society for Informatics and Operations Research, supported the sym-
posium. LADC is thus the forum for Latin-American researchers in dependability
and is extending towards a world-wide dimension as researchers from all over
the world show their interest by choosing LADC to submit their manuscripts
and present their work.

The selection process was very careful. Each manuscript was sent out for
review to three PC members plus two external reviewers. Thirty-seven sub-
missions from 17 countries were received and the 32 members of the Program
Committee and 29 external reviewers returned on time a total of 150 reviews.
This made the selection process very comprehensive. The committee met in cy-
berspace to arrange the technical program. A total of 14 papers were selected
to appear in the proceedings. The rest of the technical program was defined to
include two panels, a forum for ‘Fast Abstracts’ to report on very recent work
and two invited talks by two distinguished scholars: Phil Koopman and Jean
Arlat.

We would like to thank the Program Committee members for their help in
putting together the final program. They helped us in many ways, right from
the beginning, including topic identification, suggestion of external reviewers,
refereeing and attending the virtual PC meeting in large numbers. We also thank
all of the external reviewers for making available their time and their technical
knowledge and the authors of all the manuscripts for their contributions and the
timely submissions. Special thanks go to Sergio Rajsbaum, LADC 2007 General
Chair, Fab́ıola Greve, the Fast Abstract Chair, Rogério de Lemos, and Henrique

VIII Preface

Madeira, who took leadership in organizing two panels. Finally, we would like
to acknowledge the support of the Steering Committee.

We hope you find these conference Proceedings interesting and stimulating.

September 2007 Andrea Bondavalli
Francisco Brasileiro

Organizing Committee

General Chair Sergio Rajsbaum (Universidad Nacional
Autónoma de México, Mexico)

Program Co-chairs Andrea Bondavalli (Università degli Studi di
Firenze, Italy)

Francisco Brasileiro (Universidade Federal de
Campina Grande, Brazil)

Publication Co-chairs Fernando Lúıs Dotti (Pontif́ıcia Universidade
Católica do Rio Grande do Sul, Brazil)

Imelda Paredes (Universidad Nacional
Autónoma de México, Mexico)

Publicity Chair Fernando Pedone (University of Lugano,
Switzerland)

Finance Chair Elizabeth Pérez (Universidad Autónoma
Metropolitana, Mexico)

Local Arrangements Chair Ricardo Marcelin-Jiménez (Universidad
Autónoma Metropolitana, Mexico)

Tutorials Chair Marcos K. Aguilera (HP Labs,USA)

Fast Abstracts Chair Fab́ıola Greve (Universidade Federal da Bahia,
Brazil)

Steering Committee

Carlos Maziero Pontif́ıcia Universidade Católica do Paraná,
Brazil

Fabiola Greve Universidade Federal da Bahia, Brazil
Jean Arlat Laboratoire d’Analyse et d’Architecture des

Systèmes-Centre National de la Recherche
Scientifique, France

João Gabriel Silva Universidade de Coimbra, Portugal
Rogério de Lemos University of Kent, UK
Sergio Rajsbaum Universidad Nacional Autónoma de México,

Mexico
Taisy Silva Weber (Chair) Universidade Federal do Rio Grande do Sul,

Brazil

X Organization

LADC Program Committee

Jean Arlat Laboratoire d’Analyse et d’Architecture des
Systèmes - Centre National de la Recherche
Scientifique, France

Saurabh Bagchi Purdue University, USA
Hector Cancela Universidad de la República, Uruguay
Jose Contreras Universidad Técnica Federico Santa Maŕıa,

Chile
Bojan Cukic West Virginia University, USA
Pedro D’Argenio Universidad Nacional de Córdoba, Argentina
Xavier Defago Japan Advanced Institute of Science and

Technology, Japan
Elias Procópio Duarte Jr. Universidade Federal do Paraná, Brazil
Christof Fetzer Technische Universität Dresden, Germany
Joni Fraga Universidade Federal de Santa Catarina, Brazil
Roy Friedman Technion - Israel Institute of Technology, Israel
Fab́ıola Greve Universidade Federal da Bahia, Brazil
Farnam Jahanian University of Michigan, USA
Ingrid Jansch-Pôrto Universidade Federal do Rio Grande do Sul,

Brazil
Ricardo Jimenez-Peris Universidad Politécnica de Madrid, Spain
Henrique Madeira Universidade de Coimbra, Portugal
Ricardo Marceĺın-Jiménez Universidad Autónoma Metropolitana, Mexico
Magnos Martinello Fundação Instituto Capixaba de Pesquisas em

Contabilidade, Economia e Finanças, Brazil
Eliane Martins Universidade Estadual de Campinas, Brazil
Keith Marzullo University of California, San Diego, USA
Carlos Maziero Pontif́ıcia Universidade Católica do Paraná,

Brazil
Pedro Mejia-Alvarez Instituto Politécnico Nacional, Mexico
Takashi Nanya University of Tokyo, Japan
Edgar Nett Otto-von-Guericke-Universität Magdeburg,

Germany
Rui Oliveira Universidade do Minho, Portugal
William Sanders University of Illinois at Urbana Champaign,

USA
André Schiper Ecole Polytechnique Federale de Lausanne,

Switzerland
Richard Schlichting AT&T Research, USA
Jie Xu Leeds University, UK
Avelino Zorzo Pontif́ıcia Universidade Católica do Rio Grande

do Sul, Brazil

Organization XI

LADC Referees

Araceli Acosta
Nazareno Aguirre
Pedro Mejia-Alvarez
Jean Arlat
Saurabh Bagchi
Andrea Bondavalli
Francisco Brasileiro
Alcides Calsavara
Hector Cancela
Silvano Chiaradonna
Walfredo Cirne
Victor Costa
Bojan Cukic
Alessandro Daidone
Pedro D’Argenio
Xavier Defago
Felicita Di Giandomenico
Elias Procópio Duarte Jr.
João Durães
Lorenzo Falai
Christof Fetzer
Pablo Florentino
Mauro Fonseca
Joni da Silva Fraga
Roy Friedman
Fab́ıola Greve
Farnam Jahanian
Ingrid Jansch-Pôrto
Ricardo Jimenez-Peris
Piotr Karwaczynski

Luiz Lento
Paolo Lollini
Pablo Martinez Lopez
Lau Lung
Henrique Madeira
Paulo Mafra
José Maldonado
Ricardo Marceĺın-Jiménez
Magnos Martinello
Eliane Martins
Carlos Maziero
Wagner Meira Jr.
Takashi Nanya
Edgar Nett
Rafael Obelheiro
Rui Oliveira
Manoel Camillo de O. Penna Neto
David Powell
José Ferreira de Rezende
Luigi Romano
Jacques Sauvé
André Schiper
Richard Schlichting
Ana Paula da Silva
Neeraj Suri
Andre Gustavo Degraf Uchoa
Nicolas Wolovick
Avelino Zorzo

Co-organizers

Universidad Nacional Autónoma de México (UNAM)
Universidad Autónoma Metropolitana (UAM)

Co-sponsors

SBC—Brazilian Computer Society
SMCC—Mexican Society for Computer Science
IEEE TC on Dependable Computing and Fault Tolerance

XII Organization

In Co-operation with

IFIP Working Group 10.4 ‘Dependable Computing and Fault-Tolerance’
SCCC—Chilean Computer Science Society
SADIO—Argentine Society for Informatics and Operations Research

Table of Contents

Invited Talks

Reliability, Safety, and Security in Everyday Embedded Systems 1
Philip Koopman

Nanoscale Technologies: Prospect or Hazard to Dependable and Secure
Computing? . 3

Jean Arlat

Fault-Tolerant Algorithms

Fault-Tolerant Dynamic Routing Based on Maximum Flow
Evaluation . 7

Jonatan Schroeder and Elias Procópio Duarte Jr.

On the Implementation of Communication-Optimal Failure Detectors . . . 25
Mikel Larrea, Alberto Lafuente, Iratxe Soraluze,
Roberto Cortiñas, and Joachim Wieland

Connectivity in Eventually Quiescent Dynamic Distributed Systems 38
Sara Tucci Piergiovanni and Roberto Baldoni

Software Engineering of Dependable Systems

Implementing Fault Tolerance Using Aspect Oriented Programming 57
Ruben Alexandersson and Peter Öhman

Architecture-Centric Fault Tolerance with Exception Handling 75
Patrick Henrique S. Brito, Rogério de Lemos,
Eliane Martins, and Cećılia M. Fischer Rubira

Coverage-Oriented, Prioritized Testing – A Fuzzy Clustering Approach
and Case Study . 95

Fevzi Belli, Mubariz Eminov, and Nida Gökçe

Networking and Mobile Computing

Error Propagation Monitoring on Windows Mobile-Based Devices 111
José Carlos Bregieiro Ribeiro, Bruno Miguel Lúıs, and
Mário Zenha-Rela

Gossiping: Adaptive and Reliable Broadcasting in MANETs 123
Abdelmajid Khelil and Neeraj Suri

XIV Table of Contents

On the Behavior of Broadcasting Protocols for MANETs Under
Omission Faults Scenarios . 142

Talmai Brandão de Oliveira, Victor Franco Costa, and Fab́ıola Greve

Experimental Dependability Evaluation

Failure Boundedness in Discrete Applications . 160
João Muranho, Paula Prata, Mário Zenha-Rela, and
João Gabriel Silva

Designing Fault Injection Experiments Using State-Based Model to
Test a Space Software . 170

Ana Maria Ambrosio, Fátima Mattiello-Francisco,
Valdivino A. Santiago Jr., Wendell P. Silva, and Eliane Martins

Component-Based Software Certification Based on Experimental Risk
Assessment . 179

Regina Moraes, João Durães, Eliane Martins, and Henrique Madeira

Intrusion Tolerance and Security

Integrated Intrusion Detection in Databases . 198
José Fonseca, Marco Vieira, and Henrique Madeira

Security Rationale for a Cooperative Backup Service for Mobile
Devices . 212

Ludovic Courtès, Marc-Olivier Killijian, and David Powell

Tutorials

Do You Know... How to Analyze and Share Results from Dependability
Evaluation Experiments? . 231

Marco Vieira and Henrique Madeira

Security Patterns and Secure Systems Design . 233
Eduardo B. Fernandez

BAR—Where Distributed Computing Meets Game Theory 235
Lorenzo Alvisi

Panels

Scaling Dependability and Security in Ad Hoc Networks 237
Rogério de Lemos

Assessing, Measuring, and Benchmarking Dependability and
Resilience . 238

Henrique Madeira

Author Index . 239

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 1–2, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Reliability, Safety, and Security in
Everyday Embedded Systems

(Extended Abstract)

Philip Koopman

Carnegie Mellon University
Pittsburgh, PA 15213, USA
koopman@cmu.edu

Embedded systems permeate our everyday lives. From automobiles to elevators,
kitchen appliances to televisions, and water heaters to cell phones, we increasingly
depend upon embedded systems to operate as expected. A few obviously critical
embedded application domains, such as aviation, have traditionally benefited from
extraordinary care during development to ensure that everything is done correctly.
But increasingly, everyday embedded applications are becoming “mission critical,”
with little fanfare and perhaps without the full attention to dependability properties
that they truly deserve.

Consider the following potentially significant failure modes for embedded systems:
A cell phone that doesn’t work when the owner needs to call for emergency medical
attention. A domestic hot water heater that overheats water, causing scalding burns on a
child. A thermostat that doesn’t turn on heat when needed, causing household water
pipes to freeze and burst. A microwave oven that turns on with the door open. An
automobile that unintendedly accelerates. Today, hardware interlocks mitigate many of
these hazards. But, software is playing a bigger role as both a vulnerability and a
mitigation mechanism for critical failures. Because most embedded systems have
actuators that influence the environment, and because people count on them to operate
as expected, special care must be taken to ensure that they are safe, reliable, and secure.

Safety in the context of embedded systems deals with minimizing the frequency of
mishaps (especially loss of life, injuries, and damage to property). In many ways this
is the most mature of the areas we are discussing, because there are several industry-
specific standards that can be followed to create safe systems (e.g., IEC 61508). There
are, however, some significant research challenges outstanding in this area, including:

• How can we be sure that following a given system development process actually
results in the hoped-for level of safety?

• How can we make it easy for small, non-specialist teams of domain experts to
follow complex, “heavy-weight” safety standards and actually get it right?

• How can we simplify the representation and specification of safety properties to
make it easier to design safe systems?

Reliability in embedded systems has been studied for many years, and has to do
with ensuring that once an embedded system starts a “mission,” it has a high
probability of completing that mission without experiencing a failure. Traditional
high-reliability systems have used hardware redundancy (for example, two engines on
an airplane instead of one). But, cost-sensitive everyday embedded systems often do
not have a price structure that permits redundancy. An even bigger problem is

2 P. Koopman

creating highly reliable software, especially with quick time-to-market and low
development budget constraints. Some current research challenges in this area are:

• How can we make it easy for small, non-specialist teams of domain experts to
create highly reliable software?

• How can we quantify software reliability to support testing for design
requirements such as “software crashes no more than once per month”?

• Achieving absolute software perfection seems unrealistic. How can we create
embedded systems that survive the activation of latent software defects?

Security is, of course, a hot topic. But currently, it seems to be getting less
attention in embedded systems than in enterprise systems. While embedded systems
have not yet experienced as many widely publicized security problems as enterprise
systems have, the potential for widespread, significant impact to society is certainly
there. What happens if malicious attackers gain control of many embedded systems
with the ability to release energy (or hazardous substances) into the environment?
What if some critical infrastructure, such as energy distribution, traffic flow control,
building environmental services, or telecommunications, suddenly stops working?
While there are no easy answers to security in any environment, embedded systems
present unique challenges that require research beyond the scope of enterprise
security research, including:

• How can we make it easy for small, non-specialist teams of domain experts to get
security right, even on a small product?

• What unique security challenges arise when interconnecting embedded systems
(for example, coordinating actuators across many systems)?

• What novel vulnerabilities arise in Internet-connected embedded systems?
• What security concerns arise due to threats unique to embedded systems (for

example, when the system owner is the attacker).

Embedded systems have historically been simple, often non-critical, and usually
very reliable, safe, and secure. Newer systems are becoming more complex, and
starting to cross the fuzzy line from non-critical to criticality. Unfortunately, the
techniques and culture of developers for newly critical applications often do not take
into account this major shift. While improving developer literacy in the areas of
reliability, safety, and security will help, significant research challenges remain.

A common, underlying challenge has to do with the central role of domain experts
in embedded system design. It is common for embedded system development teams
to be relatively small, and staffed more with domain experts than computing experts.
This is often appropriate, because expert domain knowledge is crucial to success.
However, small teams and companies that are concerned mostly with an application
domain rather than computer technology often don’t have access to expertise in
dependability. So, even if researchers can solve the many outstanding research
problems, there is still the issue of finding ways to deploy that knowledge to everyday
working engineers whose training is often not primarily in computing. We must not
only solve the research questions, but also find a way to deploy that knowledge.

This work was supported in part by the General Motors Collaborative Research
Center at Carnegie Mellon University.

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 3–6, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Nanoscale Technologies: Prospect or Hazard
to Dependable and Secure Computing?

Jean Arlat

LAAS-CNRS, Université de Toulouse, 7 Avenue du Colonel Roche
31077 Toulouse Cedex 04, France

jean.arlat@laas.fr

1 Introduction

The continuous advances and progress made in hardware technologies makes it
possible to foresee a realm of unprecedented performance levels and of new
application-driven architectural designs, e. g., see [1]. One of the main drivers is the
reduction of the size of the elementary devices. Nevertheless, the evolution of
nanoscale technologies raises serious challenges with respect to both dependability
and security viewpoints. Issues at stake encompass three main types of concerns
i) unreliability and variability that will characterize the production of emerging
nanoscale devices, ii) accidental disturbances that affect the operation of the systems,
iii) malicious threats targeting vulnerabilities of hardware circuits. However, on the
other hand, thanks to the large scale integration, one may expect the fault tolerance
techniques to come to the rescue of the limitations of the currently dominating fault
avoidance approaches. After a brief review of each of these issues, we will provide a
few hints concerning a proposal for resilient multicore processor chips.

2 Chips Featuring Massively Defective Devices

Thanks to the advances of hardware technologies, one can envision in a near future
chips that will incorporate several hundred billions of transistor devices. However,
extreme downsizing results in atomic range dimensions, thus in inter- and intra-device
variability. This means that nanoscale electronic devices are becoming inherently
unreliable and moreover, unpredictable [2]. While it is expected that the defect
density currently observed for microprocessors (1,395 defects/m2) will remain in the
same order of magnitude for the next 15 years [3], this may nevertheless have an
impact on the production yield for large scale chips.

Significant progress has been made already for memory chips. Most advanced
techniques consist in providing spare elements (lines, rows or words) in order to
dynamically replace some defective element. Indeed, techniques have been proposed that
not only cope with production defects, but also with faults occurring at run time. Such
techniques are primarily meant to achieve a high yield, which may require a significant
overhead. For example, in [4], it was shown that for a 1Mb chip and a cell defect ratio of
3%, a near 100% yield can be achieved, but with a close to 100% overhead.

Efficient fault tolerance techniques have been proposed also for processor chips.
For example, the technique being recently proposed in [5] features a set of fragmented

4 J. Arlat

MPUs, for which redundant fragments are available. Another important issue
concerns control logic in processors, which is growing in size and complexity, and is
basically unprotected. The generalization of multicore architectures, and potentially
another layer of control, could well exacerbate this problem.

3 Transient Faults in Operation

One classical issue concerns mitigating the impact of disturbances (e.g., the so called
“soft errors”) that are increasingly affecting computing systems [6]. Such a problem,
well known in aerospace applications, is expected to affect also medical electronics,
cell phones and automotive systems, due to the impact of ground-based radiation.
Indeed, this problem will only worsen and create substantial challenges for designers
of automotive electronics who are considering turning to programmable logic
devices, such as FPGAs, as a flexible, low-cost solution for their next-generation
designs. A significant impact is to be expected already when considering current
technologies [7]: Let us consider a 22µm SRAM-based FPGA technology featuring
1M-gate chips; then, a simulation run using SpaceRad 4.51 and assuming an
operation at 5,000 feet altitude (e.g., Denver, CO), would lead to a prediction of 1.05
x 10-4 upsets/day. Then considering a fleet of 500,000 vehicles, each featuring an
airbag control system using this technology, would lead to 52.5 upsets/day (on a
continuous usage basis). Even assuming a more modest usage profile of 1 h per day
would still lead to about 2 upsets/day. A figure that cannot be ignored by car
developers!

Solutions for hardened technologies exist and have been intensively used in the
past. However, the high (and often excessive) cost attached to the fabrication lines for
such realizations have restricted their usage and obstructed their continuation. Hence,
the increasingly need to rely on various forms of fault tolerance techniques [8]. For
example, [9] proposes a low-cost time redundancy scheme to cope with soft errors
and timing faults. It consists in duplicating the functional flip-flops, driving the
duplicate flip-flops by delayed clocks, and then comparing the results of functional and
duplicate flip-flops. The Razor architecture [10] uses a similar approach also featuring
redundant flip-flops (referred to as “shadow latches”) and extends it to achieve lower
power dissipation. More recently, novel design solutions were proposed to cope with
these issues in the case of programmable logic arrays [11].

An increasingly important issue, that is addressed into [12], is the impact of power,
current and voltage fluctuations.

4 Hardware Vulnerabilities and Security Threats

Besides accidental faults, one should consider the risks faced by modern integrated
circuits with respect to hacking and malicious threats. Of course, smart chips and
crypto-processors are the most sensitive targets.

1 http://www.spacerad.com

 Nanoscale Technologies: Prospect or Hazard to Dependable and Secure Computing? 5

Intrusions may be performed via a wide variety of side channel attacks (e.g.,
differential power analysis or electromagnetic analysis). Embedded testing devices
(such as scan-chains), that are meant to obtain high controllability and observability
for test engineers, constitute also a weakness from the security viewpoint; indeed, the
properties of the scan chain architecture can be used for other kinds of side channel
attacks via malevolent “fault injections” exploiting the related “leakage”. Indeed, the
likelihood of a successful attack depends on both the information leakage of the
implementation and the strength/skill of the hacker to make the most of it [13].

To circumvent such attacks, enhanced mechanisms have been proposed beyond the
more classical tamper resistant designs or irreversible disconnections; they are either
based on asynchronous logic designs [14], signature checks [15] or a mix of reliability
and security mechanisms (e.g., see [16]). Still, there might be some goods new
attached to the fact that technology shrinks [17]: i) attacks get more difficult to
perform, ii) while some skills in built-in security are definitely needed, the hardware
security features available can be easily transposed to nanoscale technologies.

5 Towards Resilient Multicore Processor Chips?

The recent announcement by Intel for a 80-core chip [1] already paves the way
forward about the future multicore multiprocessor architectures. It is also expected
that this trend will influence the software techniques so as to take advantage of such
architectures. This means also that it will be possible and cost effective to consider
and exploit novel resilience solutions. The goal goes beyond simply avoiding the
delivery of defective chips (i.e., chips with defective cores). Alone, such an approach
would require increasingly — perhaps prohibitively — high effort and cost in
manufacturing and testing.

An alternative more pragmatic approach could be to maximize the capacity to
exploit the valid cores available on a chip. Indeed, along the same line of what is
currently the case where processors batches are sorted according to their frequency
(1.6 Ghz, 1.8 Ghz or 2 Ghz), the manufactured chips could be sorted according to the
achieved MIPS performance level, e.g., as a function of the number of valid cores.
Such a principle is already applied by some manufacturers: e.g., Intel Core Duo chips
featuring a defective device are “recycled” as Core Solo chips2.

As reported in [18], a more ambitious would be to apply such a (re)configuration
dynamically at run-time rather than simply at production time. This way, it would be
possible to keep using the cores available on a multicore chip, even when operational
faults would impair some additional cores.

Acknowledgments. The views expressed herein benefited from the discussions
during the Workshop on Dependable and Secure Nanocomputing held at DSN-2007
(www.laas.fr/WDSN07). In particular, the author would like to thank the two
co-organizers Ravishankar K. Iyer and Michael Nicolaïdis. This work was supported in
part by the ReSIST Network of Excellence of the EU FP6 IST Program (contract: 026764).

2 http://en.wikipedia.org/wiki/Intel_Core

6 J. Arlat

References

1. Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D., Iyer, P.,
Singh, A., Jacob, T., Jain, S., Venkataraman, S., Hoskote, Y., Borkar, N.: An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. In: Proc. IEEE ISSCC-2007, San
Francisco, CA, USA, pp. 98–99, 589 (2007)

2. Haensch, W., Nowak, E.J., Dennard, R.H., Solomon, P.M., Bryant, A., Dokumaci, O.H.,
Kumar, A., Wang, X., Johnson, J.B., Fischetti, M.V.: Silicon CMOS Devices Beyond
Scaling. IBM J. Research and Development 50, 339–361A (2006)

3. Patel, J.H.: Manufacturing Process Variations and Dependability - A Contrarian View. In:
Proc. IEEE/IFIP DSN-2007 (Supplemental Volume), Edinburgh, UK, p. 235 (2007)

4. Nicolaïdis, M., Achouri, N., Anghel, L.: A Diversified Memory Built-In Self-Repair
Approach for Nanotechnologies. In: Proc. IEEE VTS-2004, Napa Valley, CA, USA, pp.
313–318 (2004)

5. Nakura, T., Nose, K., Mizuno, M.: Fine-Grain Redundant Logic Using Defect-Prediction
Flip-Flops. In: Proc. IEEE ISSCC-2007, San Francisco, CA, USA, pp. 402–403, 611 (2007)

6. Li, X., Adve, S.V., Bose, P., Rivers, J.A.: Architecture-Level Soft Error Analysis:
Examining the Limits of Common Assumptions. In: Proc. IEEE/IFIP DSN-2007,
Edinburgh, UK, pp. 266–275 (2007)

7. Mason, M.: Cosmic Rays Damage Automotive Electronics. Automotive DesignLine
Newsletter (2006)

8. Iyer, R.K., Nakka, N.M., Kalbarczyk, Z.T., Mitra, S.: Recent Advances and New Avenues
in Hardware-level Reliability Support. IEEE Micro 25, 18–29 (2005)

9. Nicolaïdis, M.: Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer
Technologies. In: Proc. IEEE VTS’99, San Diego, CA, USA, pp. 86–94 (1999)

10. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner, K.:
Razor: Circuit-Level Correction of Timing Errors for Low-Power Operation. IEEE
Micro 24, 10–20 (2004)

11. Rao, W., Orailoglu, A., Karri, R.: Fault Tolerant Approaches to Nanoelectronic
Programmable Logic Arrays. In: Proc. IEEE/IFIP DSN-2007, Edinburgh, UK, pp. 216–
223 (2007)

12. Constantinescu, C.: Impact of Intermittent Faults on Nanocomputing Devices. In: Proc.
IEEE/IFIP DSN-2007 (Supplemental Volume), Edinburgh, UK, pp. 238–241 (2007)

13. Standaert, F.-X., Peeters, E., Archambeau, C., Quisquater, J.-J.: Towards Security Limits
in Side-Channel Attacks (With an Application to Block Ciphers). In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 30–45. Springer, Heidelberg (2006)

14. Monnet, Y., Renaudin, M., Leveugle, R.: Designing Resistant Circuits against Malicious
Faults Injection Using Asynchronous Logic. IEEE Trans. on Computers 55, 1104–1115
(2006)

15. Lee, J., Tehranipoor, M., Patel, C., Plusquellic, J.: Securing Designs Against Scan-Based
Side-Channel Attacks. IEEE Trans. on Dependable and Secure Computing (to appear, 2007)

16. Nakka, N., Kalbarczyk, Z.T., Iyer, R.K., Xu, J.: An Architectural Framework for
Providing Reliability and Security Support. In: Proc. IEEE/IFIP DSN-2004, Florence,
Italy, pp. 585–594 (2004)

17. Handschuh, H.: Security Challenges for High Density Smart Cards. In: Proc. IEEE/IFIP
DSN-2007 (Supplemental Volume), Edinburgh, UK, p. 285 (2007)

18. Zając, P., Collet, J.H., Arlat, J., Crouzet, Y.: Resilience through Self-Configuration in
Future Massively Defective Nanochips. In: Proc. IEEE/IFIP DSN-2007 (Supplemental
Volume), Edinburgh, UK, pp. 266–271 (2007)

Fault-Tolerant Dynamic Routing Based on

Maximum Flow Evaluation

Jonatan Schroeder and Elias Procópio Duarte Jr.

Federal University of Paraná (UFPR)
Dept. of Informatics – P.O. Box 19018

81531-990 Curitiba - Brazil
{jonatan,elias}@inf.ufpr.br

Abstract. This work proposes a fault-tolerant dynamic routing algo-
rithm that employs maximum flow evaluation for route selection, in-
creasing the number of disjoint paths to the destination, enhancing the
path redundancy, and so extending the possibility of using detours, or
alternative paths if needed. Route distance is employed as a secondary
criterion. Routes may be dynamically changed by intermediate routers,
which usually have more recent information about topology changes.
Formal proofs for correctness of the algorithm are also presented. The
proposed algorithm was implemented in a simulation environment and
experimental results are presented.

1 Introduction

Most routing algorithms employ the distance in number of hops as the main, if
not the only, criterion for selecting routes. Nevertheless, for critical applications
a robust route is not necessarily the shortest route.

This work proposes a novel approach for route selection based on route robust-
ness. A robust route improves the probability that if faults occur along the route
it is feasible and efficient to find another route, or detour, to the destination. A
robust route improves the ability of finding detours to the destination in case of
faults.

The proposed routing algorithm chooses an edge for the route of a given
destination using maximum flow evaluation. This evaluation is employed in order
to increase the number of disjoint paths to the destination, enhancing the path
redundancy, and so improving the probability of quickly finding short detours,
or alternative paths, after faults are detected. Route distance is employed as a
secondary metric for route selection.

The proposed routing algorithm is dynamic in the sense that each node along
the route only selects the next hop of the route, based on its current informa-
tion. In other words, no route is pre-selected at the source, so that intermediate
routers dynamically determine the route as they process the packet. This be-
havior exploits the fact that topology changes are quickly discovered by nodes
that are closer to the change itself. This concept can be also extended to traffic
information, i.e. information about congested or heavily/lightly used links.

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 7–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

8 J. Schroeder and E.P. Duarte Jr.

The dynamicity of the algorithm has a potential impact on the behavior of
routing during the convergence latency interval. Routing protocols present a
convergence latency after the network topology changes [1] due to router or link
failures. During the convergence latency interval all routing tables are updated
in order to compute the new paths to be employed. For some protocols the
convergence latency is quite large. For instance, the average latency for the
Internet’s BGP, (Border Gateway Protocol), is about 3 minutes, but intervals of
up to 15 minutes [2] have also been reported. During the convergence latency
interval, packets may be lost, and connections may be broken.

The proposed algorithm does not require that routers be initialized with the
complete network topology, routers are initialized only with information about
their neighbors. Nodes keep a local topology representation that is updated
with periodic messages exchanged with neighbors. The algorithm is able to suc-
cessfully route messages even when the local representation of the topology is
out-of-date, or does not represent the complete network topology.

Figure 1 shows an example network topology and the route selected by the pro-
posed algorithm to send a packet from s to t. Initially s chooses to send the packet
through node a, from which there are two edge-disjoint paths to reach the destina-
tion t. As from node b there is only one available path, the edge to node a receives a
better evaluation by the routing algorithm. Now, node a sends the packet to node
e, because in comparison to node c both have the same number of edge-disjoint
paths but the distance from e to t is shorter. However consider that the link from
node e to node t has failed, and so far only node e has this information. Executing
the algorithm, node e sends the packet back to node a, which then forwards the
packet through c and d to the destination t. Details about the criteria employed
and the formal specification of the algorithm are presented in section 2.

The algorithm was implemented, and the implementation is available on the
Internet, created with Java [3]. Implementation details, as well as experimental
results obtained with Internet-like networks on a simulation environment, are pre-
sented in section 4. A running applet is available at http://www.inf.ufpr.br/
jonatan/mfrp.

Fig. 1. An example topology and the route chosen by the algorithm

http://www.inf.ufpr.br/jonatan/mfrp
http://www.inf.ufpr.br/jonatan/mfrp

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 9

This work is organized as follows. Section 2 presents the algorithm specifi-
cation. Section 3 presents the proofs of correctness of the algorithm. Section 4
presents experimental results. Section 5 points to related work. Finally, section 6
concludes the paper.

2 The Proposed Algorithm

The proposed routing algorithm is executed for each packet that is sent from a
given source to a given destination. The algorithm is run initially by the source
node, which chooses the next node of the route, among its neighbors. When
the packet arrives at the next node, this node runs the algorithm to choose the
following node, and so on, until the packet reaches the destination.

The approach used by this algorithm is similar to that of Bellman-Ford al-
gorithm [1], in the sense that each node does not need a previous knowledge of
the topology. A node running the algorithm chooses the next node of the route,
instead of the complete route. Furthermore, the algorithm works even if the most
recent topology changes are not known by all nodes.

The proposed algorithm chooses the next node of the route through an eval-
uation of each adjacent edge. This evaluation is based on a trade-off between
redundancy and the distance of the paths to the destination from the evaluated
edge. After the evaluation, the best edge is chosen.

The formulae and equations for the computation of the metrics used in this
work assert that each node has a local representation of the network topology.
The topology is learnt and updated by each node through periodic messages
exchanged with neighbors, as described below. This topology update messages
are sets of tuples <edge,state,timestamp>, where state is either faulty or fault-
free and timestamp is a counter of state changes. This timestamp allows nodes
to determine whether the information is newer than the one it already has. The
local representation, however, does not need to be complete and up-to-date. The
topology is represented through a directed graph structure, with a set of vertices,
corresponding to the network nodes, and a set of edges, corresponding to the
network links.

This work considers crash faults, and the system is considered to be partially
synchronous, i.e., there is a finite time limit, not necessarily known, for the delay
on the communication between any pair of nodes.

2.1 Algorithm Specification

This section initially presents some preliminary definitions used in the algorithm
specification.

A directed graph (or digraph) G is a pair (V, E) of sets, in which V is a set
of nodes (or vertices) and E is a set of edges (or links). Each edge is a pair of
exactly two different nodes.

10 J. Schroeder and E.P. Duarte Jr.

Let G = (V, E) be a digraph; let c : E → � be a function corresponding to
the capacity of the digraph edges; let u, v ∈ V be nodes of the digraph G. A flow
between u and v is a function f : E → � where:

∀e ∈ E, f(e) ≤ c(e)

∀t ∈ V − {u, v},
∑

e=(t,t′)∈E

f(e) =
∑

e=(t′,t)∈E

f(e)

The size (or cardinality) of a flow f , represented as |f |, is defined as:

|f | =
∑

e=(u,t)∈E

f(e) −
∑

e=(t,u)∈E

f(e)

A flow f is said to be maximum if, for every flow f ′ between the same pair of
nodes, |f | ≤ |f ′|.

Let u, v ∈ V be nodes of the graph G. A cut between u and v is a set of
edges C so that removing all edges in C from the graph G, u and v are not
connected. The size (or cardinality) of a cut C, represented as |C|, is defined as
the cardinality of the set C. A cut C is said to be minimum if, for every cut
C′ between the same pair of nodes, |C| ≤ |C′|. For every pair of nodes of the
network, the maximum flow and the minimum cut have the same cardinality,
and are computed with the same algorithms [4]. So, this work will use both terms
interchangeably.

Figure 2 shows the algorithm that is run when node n has to route a packet
to a given destination. Γ (G, e) is an evaluation function, specified below.

The evaluation of the edges to be used in the routing process is computed
on a subgraph of the digraph that corresponds to the local representation of
the network topology. This subgraph is obtained with the removal of the nodes
already visited by the packet, and of the edges that are adjacent to these nodes.
This strategy guarantees there will not be loops.

There is a specific case in which edges that lead to loops are used. Considering
that topology information is not necessarily up-to-date in all nodes, a node can
choose an edge based on a path that is not available anymore, or is faulty. When
a packet reaches a node that already has up-to-date information, it is possible
that the only available paths to the destination pass through nodes already
visited. In this case, the packet needs to be delivered back to the node from
which it came. However, the node that receives this packet probably has out-of-
date information about the topology, since its selection led to a node without
available route options. So, in order to make it possible for this node to have up-
to-date information, the update message programmed to be sent to this node is
anticipated, and is sent before the packet is sent back to the node. This way, the
new node can take the decision for a new path based on more recently updated
information about the topology, and so avoiding paths with no routing options.

In order to make the information about the availability of the routes reach all
nodes in the network, a topology update process is run on each node. This process
is run every α seconds, where α is a parameter of the algorithm. Each node sends

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 11

1. Add node n to the list of visited nodes of the message.
2. If there is an edge from node n to the destination, send the

message through this edge and finish.
3. Create an auxiliary graph G′, corresponding to the known

topology, removing the visited nodes of the message.
4. Evaluate each adjacent edge of node n, using function Γ (G, e)

in graph G′. Edges reaching visited nodes are not evaluated,
as well as edges without available paths to the destination.

5. If at least one edge was evaluated, send the message through
edge e with the largest Γ (G, e).

6. If no edge could be evaluated:
(a) Remove n from the list of visited nodes.
(b) If n is the source of the message, return an error.
(c) If n is an intermediate node, send an update message,

followed by the routed message, to the last node on the
list of visited nodes.

Fig. 2. The algorithm for choosing the next edge

for all its neighbors recently learnt information about topology changes. When
a node receives a packet through an edge that was considered faulty, the node
adds the edge to its local representation of the topology. If an update message
is expected and is not received through an edge after a timeout, the edge is
considered faulty and is removed from the local representation of the network
topology. This timeout is called β (β > α), and is also a parameter of the
algorithm.

After receiving an update message, each node replies with an acknowledge-
ment. After this acknowledgement is received, all information is marked so that
the sender does not need to resend the information again in the next update
message.

2.2 Edge Evaluation: Path Redundancy and Distance

The computation of the edge evaluation function Γ (G, e) is based on a set of
quantitative criteria related to the redundancy and to the size of the paths that
pass through the evaluated edge. For each of these criteria, a weight is associated,
so that the computation can be adapted to the priority given to each criterion.
Each weight is a parameter of the algorithm.

The following formula corresponds to the computation of the edge evaluation:

Γ (G, e) =
∑

cn∈C

ωn × cn(e) (1)

12 J. Schroeder and E.P. Duarte Jr.

In this equation, Γ (G, e) is the evaluation function, e is the edge being eval-
uated, C is the set of criteria (described below) and ωn is the weight associated
to criterion cn.

The criteria used for edge evaluation are functions that receive a graph rep-
resenting the topology as input and an edge, and return a numeric value. This
work uses two criteria: the cardinality of the maximum flow (or the minimum
cut) from the node adjacent to the evaluated edge to the destination node (c1)
and the length of the shortest path between these nodes (c2).

The main criterion used in this work for the evaluation of the edges for routing
is the maximum flow (or minimum cut) from the node adjacent to the evaluated
edge to the destination. This criterion is called c1. A classic algorithm for the
computation of the maximum flow is the Ford and Fulkerson algorithm [4,5]. This
algorithm uses an edge-valued graph structure, in which, for a graph G = (V, E)
there is a function c : E → �, that associates a value for each edge, corresponding
to the capacity of the edge. Our algorithm assumes that c(e) = 1 for all edges.
The complexity of this algorithm, when the capacity is an integer, is O(NM),
where N is the number of nodes and M is the number of edges of the graph
[5]. For the weight associated with this criterion (ω1) a positive value is used,
since the evaluation of an edge is intended to be proportional to the result of
this function.

In order to select routes that are not only robust but also short, one of the
criterion used for the evaluation of an edge is the minimum distance from the
node adjacent to the evaluated edge to the destination. This criterion is called
c2. As this work considers that all edge capacities or costs are equal to one,
a breadth-first search on the graph, in which the number of rounds, or levels,
passed through to find the destination node, starting at the evaluated node, is
used as the result of the criterion. The breadth-first search is run in O(M) steps,
where M is the number of edges in the network [6,5]. For the weight associated
to this criterion (ω2) a negative value is used, since a shorter distance is better
for evaluation of the edge.

2.3 Example Executions

Figure 3 shows an example execution of the algorithm. In this figure, suppose
node s has to send a packet to node t, The routing algorithm is run on s,
evaluating all adjacent edges, i.e., (s, a), (s, b) and (s, c), and choosing the one
that has the best evaluation and that will be used for the routing. Suppose the
chosen edge is (s, b), the packet is then sent from s to b through this edge.

When node b receives the packet sent by s to t, it evaluates edges (b, d) and
(b, e). Edge (b, s) is not evaluated, since node s has already been visited and,
so, is removed from the graph used for the evaluation. Suppose the chosen edge
is (b, e). The packet is then sent to node e. Similarly e evaluates its neighbor
edges, discarding (e, b) and choosing (e, h). Finally, node h evaluates its adjacent
edges. As it has an edge that goes directly to the final destination t, this edge
is used. So, the packet is sent to node t through edge (h, t), achieving the final
destination.

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 13

Fig. 3. An example execution

Fig. 4. Rerouting after an edge becomes faulty

Consider another example. Suppose that, in the same network described
above, a fault occurs on edge (h, t), that is used on the path between s and
t. Figure 4 shows the resulting network after this fault. Suppose, again, that s
has a packet to send to t, immediately after the fault occurs. Suppose that, when
the packet is sent, only nodes h and t (adjacent to the faulty edge) have infor-
mation about the occurrence of the fault. The algorithm is run by node s, which
sends the packet to b, that sends the packet to node e, that sends the packet
to node h. This procedure is executed in the same way it was in the previous
example, since these nodes have not had their topology information changed.

When node h receives the packet to be sent to node t, it finds out that the
only possible paths leading to t pass through nodes already visited by the packet,
such as node e. Since there is no alternative route for sending the packet, node
h sends a topology update message to node e. As node e receives this message,
it will be able to take a decision based on more recent topology information. Fi-
nally, after sending the update message, node h sends the original packet back to
e. When node e receives the original packet, it will take a new decision about the
edge that should be used, now considering that the edge (h, t) is not employable.
So, another edge is chosen, for example, edge (e, g), sending the packet to node g.

14 J. Schroeder and E.P. Duarte Jr.

Fig. 5. An example execution with Γ evaluation

This node sends the packet to node t, using the edge (g, t), and the packet
achieves its destination.

Another example execution is shown in figure 5. The network shown in this
figure is the same as that shown in figure 1. In this example we show the eval-
uation function Γ (G, e) computed for the selection of the edges. Suppose the
weights for the criteria described above, ω1 and ω2, are respectively 20 and -5.
Suppose node s has a packet to send to node t, and edge (e, t) is faulty, but only
edges e and t have this information at this time.

Initially, node s evaluates all its adjacent edges, i.e. edges (s, a) and (s, b).
Both evaluations are made in a subgraph G′, that is equivalent to the original
topology representation in node s, except for node s itself. Note that edge (e, t),
even faulty, is still in graph G′, since node s does not have the information that
it is faulty. In graph G′, the maximum flow from node a to node t is equal to two,
and from node b to node t is equal to one, so c1((s, a)) = 2 and c1((s, b)) = 1.
The minimum path from node a to node t is a − e − t, with distance 2. The
minimum path from node b to node t is b − f − t, also with distance 2. So,
c2((s, a)) = c2((s, b)) = 2. Applying these values to the Γ (e) equation, we have:
Γ ((s, a)) = 30 and Γ ((s, b)) = 10, and thus edge (s, a) is selected.

When the packet arrives at node a, it evaluates edges (a, c) and (a, e). Edge
(a, s) is ignored, since node s was already visited. Now the evaluation is made
on a subgraph G′′, similar to the original topology representation in node a, but
removing nodes s and a, already visited. Note that edge e − t, even faulty, is
still in subgraph G′′, since node a does not have the information it is faulty. In
subgraph G′′, the maximum flow from both nodes c and e to the destination t
is equal to 1, so c1((a, c)) = c1((a, e)) = 1. The minimum path from node c to
node t is c − d − t, with distance 2. The minimum path from node e to node t is
e− t, with distance 1. So, c2((a, c)) = 2 and c2((a, e)) = 1. Applying these values
to the Γ (e) equation, we have: Γ ((a, c)) = 10 and Γ ((a, e)) = 15, and thus edge
(a, e) is selected.

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 15

Node e, receiving the packet, has no alternatives for routing, as its only non-
faulty adjacent edge leads to node a, already visited. So, a topology update
message is sent to node a, containing the information about edge (e, t), followed
by the packet itself. When node a receives both the message and the packet, it
re-evaluates all its adjacent edges. Edge (a, e) is now ignored, as it does not have
any available path to the destination. Edge (a, s) is ignored, and Γ ((a, c)) = 10,
as described above, and (a, c) is select.

Now node c receives the packet, and it evaluates the only possible edge (c, d),
with c1((c, d)) = 1, c2((c, d)) = 2 and Γ ((c, d)) = 15. The packet is delivered to
node d, that has a direct available link to node t, and sends the packet to the
destination through this link.

3 Proofs

In this section we present proofs of correctness of the algorithm, as well as proofs
for the number and size of the update messages, the edge selection complexity
and the latency of the algorithm.

3.1 Correctness

The first proof corresponds to the correctness of the algorithm, i.e., if there
is a route between two nodes, the algorithm will route a packet successfully
between these two nodes. This proof assumes the following hypotheses. The first
hypothesis states that nodes that are adjacent to an edge (or to another node)
have correct information about the state of this edge (or node). The second
hypothesis states that the source node has at least one non-faulty path to the
destination in its local representation, i.e., in the local representation of the
topology in the source node at least one available path between source and
destination must be fully working; please note that this is not necessarily the
selected route. Another hypothesis states there is no topology change from the
time the packet leaves the source and the time it arrives at the final destination,
or until the source learns that there is no available path to the destination.

Initially a lemma is proved stating that if a packet is sent through all edges
with paths in the source’s local representation of the network and returns to the
source in every path, the source will learn there is no route to the destination
and the routing will correctly fail. After that, another lemma proves that, if
there is a non-faulty path to the destination through the selected edge, this edge
is used in the route. The next lemma proves that if there is one or more paths in
the local representation of the network in the source that are not faulty, then an
edge that is part of one of these paths is chosen to the route. Finally, using the
proved lemmas, the theorem stating the correctness of the algorithm is proven.

Lemma 1. Consider graph G = (V, E), and two non-faulty nodes s, t ∈ V
of this graph. Consider all nodes have the correct state information of their
adjacent edges in their local representations of the topology. If s sends a packet
with destination t using the proposed algorithm, and no edge adjacent to s is

16 J. Schroeder and E.P. Duarte Jr.

selected, or if after the message is sent in several tries through all adjacent edges
and all return an update message to the source, then s learns there is no available
route to the destination.

Proof. Assume the set of adjacent non-faulty edges of s is the set {e1, e2, . . . en}.
Edges that do not have available paths leading to the destination are ignored by
the algorithm, and so are not included in this set. Proving by induction, assume
initially that this set is empty, i.e., s does not have any fault-free adjacent edge.
The proof in this case is trivial, since s learns that there is no available route to
the destination.

Assume now the lemma is true for set {e1, e2, . . . en−1}. Assume that the set
is {e1, e2, . . . en−1, en}. Assume, without loss of generality, that the chosen edge
for routing is edge en. So, the packet is sent through edge en to the next node,
say node u. As there is no path to the destination, the packet has to return to
the node from where it came from. One of the hypotheses assumes the packet
is sent back through the same edge, en, but this happens only after u sends s a
message with all topology updates learned by u, considering u has no available
route to the destination t. After s receives this update message, it updates its
local representation of the topology. When the original packet arrives, a new
evaluation will start, and this time edge en is ignored, since the received topology
information points to the nonexistence of paths to the destination t through edge
en. So the set of available edges is changed to {e1, e2, . . . en−1}, for which the
lemma is true. So, by induction, the lemma is true, and s learns there is no
available route to the destination.

Lemma 2. Consider G = (V, E) is a graph, and s, t ∈ V are two non-faulty
nodes of this graph. Consider all nodes have the correct state information of
their adjacent edges in their local representations of the topology. Consider there
is a path from s to t, and that (s, u) is the first edge of this path (u and t may
be the same node). If s sends a packet with destination t through the edge (s, u)
using the proposed algorithm, the packet will either reach its destination or return
to the source s.

Proof. We prove by induction. First assume graph G has only two nodes. These
nodes have to be s and t and, by definition, they are not the same node. The
only edge that can be evaluated by node s is edge (s, t), since there is no other
possible edge in the graph. So, t = u. If this edge is faulty, s has the information
about this fault (hypothesis) and so (s, u) cannot be evaluated. However, if the
edge is not faulty, then the packet is sent by node s directly to node t through
the edge (s, u), arriving node t. When t = u a similar proof can be given.

Assume now that the lemma is true for a graph with (n − 1) nodes. Suppose
that G has n nodes. When s sends a packet through the edge (s, u), the hy-
potheses assert s has the information that this edge is not faulty. Node u, on
receiving the packet and after evaluating its adjacent edges, removes node s from
the graph used for the evaluation, and so continues the execution on a subgraph
containing (n − 1) nodes, for which the lemma is true. So, by induction, the
lemma is proven true for every number of nodes.

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 17

Lemma 3. Consider graph G = (V, E), and two non-faulty nodes s, t ∈ V .
Consider all nodes have the correct state information of their adjacent edges in
their local representations of the topology. Consider s has a available path leading
to t in its local representation. If s has to send a packet to t, using the proposed
algorithm, an edge that belongs to a fully available route is chosen.

Proof. Proving by induction, consider s has only one neighbor, called u. As there
is an available path leading to t, this path has to pass through u (which can be
t itself). When the edges are evaluated, edge (s, u) is chosen because s has a
non-faulty route passing through this edge in its local representation, and it is
the only available edge. So, the lemma is true for one neighbor.

Now consider the lemma is true for (n− 1) neighbors. Suppose s has n neigh-
bors, called u1, u2, . . . un−1, un. Using the proposed algorithm, some edges are
going to be discarded, as they do not belong to available paths to the destination,
as proven by the previous lemma. Suppose, without loss of generality, (s, un) is
discarded. So, the algorithm continues with (n−1) neighbors, for which case the
lemma is true.

Consider now that no edge is discarded. Without loss of generality, consider
the edge evaluated as the best is (s, un). The algorithm sends a packet through
this edge. If the edge belongs to a available path leading to t, the lemma is
proven. If, however, there is no available path leading to t through (s, un), the
packet returns to node un, as proven by lemma 2, and a routing message is sent
back to node s with more recent information about the network topology. So,
edge (s, un) is discarded, as it does not belong to an available to node t. The
algorithm continues with (n−1) neighbors, for which it is true. Thus the lemma
is proven for any number of neighbors.

Theorem 1. Consider graph G = (V, E), and two non-faulty nodes s, t ∈ V .
Consider all nodes have the correct state information of their adjacent edges in
their local representations of the topology. Consider s has at least one available
non-faulty path leading to t in its local representation. If s sends a packet to t
using the proposed algorithm, the packet is delivered to t.

Proof. Initially consider there is a non-faulty edge linking s to t. In this case, as
s is adjacent to the edge and, so, has the information about its state, the packet
is sent from s to t through the edge (s, t), arriving at t, as proposed.

Consider now there is no direct link between s and t, or it exists, but is faulty.
According to lemma 3, as s has a non-faulty path leading to destination t in its
local representation of the topology, an edge that belongs to a non-faulty route
is chosen. According to lemma 2, as the chosen edge leads to a available path,
the packet arrives its destination. So, the packet arrives the destination t.

3.2 Number and Size of Update Messages

Theorem 2. Consider a network that employs the proposed algorithm for rout-
ing. The number of topology update messages sent by all nodes is O(M) every α
seconds, and each message has O(M) entries.

18 J. Schroeder and E.P. Duarte Jr.

Proof. The proposed algorithm employs periodic topology update messages. Ac-
cording to the algorithm specification, each node sends a message every α seconds
for each of its neighbors. If gv is the degree of node v, i.e. the number of adjacent
edges of node v, each node sends gv messages every α seconds. Thus

∑

v∈V

gv = 2M

2M messages are sent by all nodes every α seconds, and the number of messages
sent is O(M) every α seconds.

The worst case of the message size is when it has information about all links
in the network. As each edge is counted twice (once for each adjacent node), the
largest possible message has 2M entries, so the message size, in the worst case,
is O(M) entries.

3.3 Edge Selection Complexity

Theorem 3. Consider a network that employs the proposed algorithm for rout-
ing. The complexity for evaluating and selecting an edge for routing is O(M2).

Proof. For the selection of an edge, the proposed algorithm computes Γ (G, e) for
each of its neighbor edges, i.e. for gv edges. The Γ (G, e) computation includes
the computation of two criteria: the criterion c1, corresponding to the maximum
flow, that has a complexity of O(NM) [5]; and the criterion c2, corresponding
to the breadth-first search, with complexity of O(M) [5]. Thus, the complexity
for the computation of Γ (e) is O(NM + M) = O(NM). As this function is
computed for each neighbor edge, the selection of an edge is done in O(NMgv)
steps. As Ngv = 2M , the selection is done in O(M2) steps.

3.4 Latency

In this subsection, we evaluate the time required after a topology change for a
message to be properly routed.

Theorem 4. Consider a network that employs the proposed algorithm for rout-
ing. Consider that the source node has an available route to the destination in
its local representation of the topology. Consider that the state of an edge tog-
gles. The time elapsed from the occurrence of this event until a packet can be
successfully delivered to the destination is β seconds.

Proof. Assume that there is a route to the destination in the source’s local
representation of the topology, and that this route does not pass through the
edge that toggled state. This can be assumed as the route was assumed to be
available. In this case, only the nodes adjacent to the edge have information
about the state change. If the edge becomes faulty, each neighbor will learn the
state after β seconds without receiving any message through the faulty edge. If
the state change is the recovery of a faulty edge, or a new edge that is added
to the network, then the neighbors will learn the state change after at most α
seconds, when the next topology update message is sent. As β > α, in this case
the latency is β seconds.

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 19

Theorem 5. Consider a network that employs the proposed algorithm for rout-
ing. Consider, now, there is no available route to the destination in the source’s
local representation of the network. Consider that the state of an edge toggles.
The time elapsed after the occurrence of this event until a packet can be suc-
cessfully delivered to the destination is O(D(G)α) seconds, where D(G) is the
diameter of the graph representing the network topology.

Proof. In this case the source node does not have any available path to the
destination in its local representation of the network. However, there is a path
leading to the destination passing through a faulty link that becomes available.
The neighbors of this link learn the state change in at most α seconds. This
information has to be sent to the neighbor’s neighbors, and so on until the
information arrives at the node that has a packet to send. In each step the
information takes at most α seconds to arrive at the next node. As each node
sends the message to all its neighbors, the message will arrive at the node that
needs the information in a number of steps equivalent to the minimum distance
between this node and the edge that has its state changed. As the maximum
shortest distance of two nodes in a graph is the diameter of the graph, or D(G),
the latency of the proposed algorithm for this case is O(D(G)α).

4 Implementation and Experimental Results

A simulator for the proposed routing algorithm was implemented in Java [3],
version J2SE (Java 2 Standard Edition) 1.4.2. A running applet is available at
http://www.inf.ufpr.br/jonatan/mfrp.

The implementation was divided in three modules. The first module is the
main module, which contains internal procedures, such as those employed for
the communication between nodes and edges, the edge evaluation for routing,
and the procedures for sending and receiving the topology update messages. The
second module is the graphical interface module, used for setting parameters
and visualizing the execution of the algorithm; the user can draw the topology,
observe the flow of routing information, determine the state of links and nodes,
and check selected routes. The third module is the simulation module, employed
to obtain experimental results on random graphs with random events.

The random graphs were generated using the Power Law distribution model
[7]. This model is proven to generate topologies that are very similar to those of
real networks, such as the Internet [8,9,10]. The simulation module, mentioned
before, implements the algorithm by Bu and Towsley [11] for creating random
Power Law graphs.

The experimental results presented in this paper take into account the num-
ber of messages that successfully arrive at the destination. For each simulation,
several graphs of 100 nodes each were generated. We could not employ larger
graphs due to lack of resources for the simulation. For each graph, a set of events
was generated. An event corresponds to either the change of the state of an edge,
the change of the state of a node state or the creation of a packet for routing.
Each event has an associated timestamp.

http://www.inf.ufpr.br/jonatan/mfrp

20 J. Schroeder and E.P. Duarte Jr.

The graph generator employed the Bu and Towsley algorithm with the follow-
ing parameters: m0 (initial backbone size) corresponding to 5 nodes, p (related
to the number of edges) equal to 0.6, and β (related to the graph sparsity) equal
to 0.2. In each graph random events were scheduled for about 10 minutes. About
every 120 seconds a randomly chosen node toggled its state; a random edge state
change was scheduled for about every 60 seconds; a packet was generated about
every two seconds. In all tests, the simulation was run several times for each
graph, using a representative result as the final result for each simulation.

Since for all simulations the same set of events was used, packets were ignored
in case they did not arrive at the destination because (1) the source or destination
failed or (2) there is no available route between source and destination. Each
simulation generated a total of 286 messages for each graph in average, and
about 25 messages were discarded for one of the reasons presented above.

In the first simulation experiment a varying time interval between topology
update messages, known as α, was employed. The following values were used
for α: 10 milliseconds, 0.5 seconds, 1 second, 2 seconds, 5 seconds, 10 seconds
and 20 seconds. In all simulations, β was defined as 2α, the delay for a message
transmission through an edge was 200 milliseconds and the values 20 and -5
were used respectively for the weights of the criteria c1 and c2 (ω1 and ω2). The
results are presented in figure 6, in (A). In this figure, the average number of
messages arriving at the destination in all graphs is used as result.

We can observe through the results of experiment 1 that the algorithm per-
formance is worse for higher values of α. The same occurs for very low values,
as 10 milliseconds. In the latter case, only five messages were successfully routed
to their destinations. This happens because, for a very low α, the number of
messages in the network is higher, causing congestion at some points and the
topology update messages get delayed. With a higher value of α, there is a re-
duction in the number of messages and most topology update messages can be
received in time. However, as α increases, the time for a node to receive topology
update messages also increases, and the local representation of the topology at
the nodes get out-of-date for longer periods. Thus, for this experiment we can
conclude that the best range for α is between 500 milliseconds and two seconds.

 230

 235

 240

 245

 250

 255

 260

 265

 270

 20000 10000 5000 2000 1000 500

R
ec

ei
ve

d
m

es
sa

ge
s

α (milliseconds)

Result

 256

 258

 260

 262

 264

 50000 30000 20000 15000 10000 7500 5000

R
ec

ei
ve

d
m

es
sa

ge
s

β (milliseconds)

Result

(A) (B)

Fig. 6. Simulation results for a varying α and β

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 21

Another experiment varied the timeout interval for receiving information from
a given neighbor, called β. The simulation was run having α equal to 5 seconds,
and using the following values for β: 5, 7.5, 10, 15, 20, 30 and 50 seconds. In all
simulations, the delay for a message to pass through an edge is 200 milliseconds,
and the values 20 and -5 were used respectively for the criterion weights ω1

and ω2. The result is shown in figure 6, in (B). In this figure, as above, results
correspond to the average of the number of packets arriving at the destination
when routed with the proposed algorithm.

The results obtained show that there is a very low variation for the value of β
(note that the scales are different than the ones of the previous figure), however
the result is better for shorter values of β, closer to α. For higher values, the
algorithm’s latency is increased, and the time for a node to acknowledge the
failure of an edge is also increased, and so rising the probability of sending a
message through a faulty edge.

5 Related Work

The dependability requirements for modern networks is increasingly high. The
convergence latency of current Internet routing protocols, especially BGP is a
problem [2,12]. During this interval packets are lost and connections are broken.
This situation can persist even when the physical network is redundant, offering
alternative physical routes for communication.

Several approaches have been proposed in order to decrease BGP’s conver-
gence latency and/or to avoid its consequences. Recently, Sahoo et al. [13]
presented a strategy for adjusting BGP parameters, specially MRAI (Mini-
mum Route Advertisement Interval) and for reducing the processing overhead
of routers, allowing the reduction of the convergence latency after large-scale
failures. A set of tools for monitoring BGP routers, as well as determining rel-
evant events that may result in routing anomalies are presented in [14]. In [15]
an alternative BGP version is proposed, with messages for reporting faults that
allow new information to be distinguished from old information. The authors
show that their strategy avoids part of BGP instability problems.

Another strategy is FRTR (Fast Routing Table Recovery), introduced in [16],
which was proposed to detect and correct inconsistencies in neighbor routers
tables; the paper shows that the original BGP neither detects nor solves sev-
eral types of inconsistencies. An evaluation of the packet loss rate during the
convergence latency is presented in [17]. The authors conclude that increasing
the network connectivity causes a decrease of the packet loss rate, and that the
ability of the protocol of quickly propagating network state information is also
important to reduce the packet loss rate. Two papers [18,19] propose strategies
for path dependence analysis, in order to reduce the number of paths considered
during the convergence, and so reducing the convergence latency. None of these
papers proposes a solution that solves completely the problem.

An approach for finding robust paths, proposed in [20], is based on the iden-
tification of nodes that belong to highly connected components on the network,

22 J. Schroeder and E.P. Duarte Jr.

in order to find paths that pass through these nodes. Two connectivity crite-
ria are defined, named #C(v) and MCC(v), or the connectivity number and
the maximum connectivity component of a vertex, respectively. Polynomial al-
gorithms based on Gomory and Hu’s cut tree [21] are proposed for computing
these criteria. However, this approach is intended to be used for internal routing
only, as nodes are required to to maintain a complete and up-to-date topology
representation of the network.

Another related work refers to QoS routing, in which besides distance other
criteria are taken into account such as bandwidth, jitter and delay. In this case,
even if there are no link or node failures, and communication is not totally inter-
rupted, the previously agreed quality of service (QoS) level has to be maintained.
When a QoS violation is predicted or detected, rerouting is required [22]. The
MPLS (Multi Protocol Label Switching) protocol [23] is usually employed in this
setting. Using MPLS, it is possible to establish virtual circuits that carry flows
with specific QoS requirements. When a MPLS router has to change the virtual
circuit used for transmitting a flow, rerouting occurs for QoS restoration [24].

Several strategies for MPLS rerouting have been proposed. In [25], an archi-
tecture is presented based on mobile agents for monitoring virtual circuits and
rerouting after a QoS failure tendency is detected. This kind of approach is said
to be proactive, as opposed to reactive approaches which cause rerouting only
after detecting that the agreed parameters have been broken. In the proactive
approach periods when the network does not offer the required QoS levels are
avoided; on the other hand, rerouting is some times executed without being nec-
essary, as a QoS fault tendency is not always confirmed. Most proactive QoS
restoration techniques are based on back-up routes that are reserved for the flow
from the time it is established to the time it is released [26], even when they
are not necessary. A comparison between proactive and reactive strategies based
on traffic engineering is presented in [27]. Tanaka et al. [28] take into account
the physical network technology to evaluate rerouting strategies, considering
IP routers and optical devices, such as PXC’s (Photonic Cross Connects) and
DWDM (Dense Wavelength Division Multiplexing).

6 Conclusion

This work introduced a new fault-tolerant dynamic routing algorithm. Routes
are dynamically selected with maximum flow evaluation and distance. The pro-
posed algorithm does not require that routers be initialized with the complete
network topology. Intermediate routers are able to switch the path employed,
and this path itself is selected based on robustness, i.e. the number of edge-
disjoint routes it offers. The proposed routing approach was formally specified.
The correctness of the algorithm was proven in as well as the complexity, latency,
and the number and sizes of messages. Experimental results obtained through
simulation in Internet-like topologies were presented, allowing an evaluation of
choices for the algorithm parameters.

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 23

Future work includes extending the proposed algorithm to deal with QoS
(Quality of Service) routing, allowing the selection of paths based on delay, cost
and bandwidth. The development of a path cache, for which the first message for
a source-destination pair establishes a path for others to follow, and so reducing
overflow, is under study. Employing additional criteria for evaluating edges, such
as the number of paths leading to the destination and the average distance of
such paths, is also under consideration, as well as simulation tests comparing
the algorithm with other well-known routing algorithms, such as Dijkstra and
Bellman-Ford. Implementations on larger networks and on real networks are also
planned for the future. Finally, a protocol using the proposed algorithm is being
developed. In order to be practical when deployed in large networks, this protocol
must employ techniques for enhancing the performance of the algorithm, such
as off-line route evaluation, and routing flows instead of single packets.

References

1. Huitema, C.: Routing in the Internet, 2nd edn. Prentice Hall, Upper Saddle River
(1999)

2. Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed internet routing conver-
gence. In: SIGCOMM, pp. 175–187 (2000)

3. Java Technology: http://java.sun.com
4. Ford Jr., L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press

(1962)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn.
McGraw-Hill, New York (1990)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

7. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-Law Relationships of the
Internet Topology. In: Proceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM’99), Cambridge, Massachusetts, USA, pp. 251–262. ACM Press, New York
(1999)

8. Medina, A., Matta, I., Byers, J.: On the Origin of Power Laws in Internet Topolo-
gies. SIGCOMM Computer Communication Review 30(2), 18–28 (2000)

9. Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: The
Origin of Power-Laws in Internet Topologies Revisited. In: Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’2002). IEEE Computer Society Press, Los Alamitos (2002)

10. Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Net-
work Topology Generators: Degree-Based vs. Structural. In: Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’2002), pp. 147–159. ACM Press, New York
(2002)

11. Bu, T., Towsley, D.F.: On Distinguishing between Internet Power Law Topology
Generators. In: Proceedings of the 21st Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM’2002). IEEE Computer Society
Press, Los Alamitos (2002)

http://java.sun.com

24 J. Schroeder and E.P. Duarte Jr.

12. Pei, D., Zhang, B., Massey, D., Zhang, L.: An analysis of convergence delay in path
vector routing protocols. Computer Networks 50(3) (2006)

13. Sahoo, A., Kant, K., Mohapatra, P.: Improving bgp convergence delay for large-
scale failures. In: The 7th IEEE/IPIP International Conference on Dependable
Systems and Networks (DSN’06), Philadelphia, U.S.A (2006)

14. Wong, T., Jacobson, V., Alaettinoglu, C.: Internet Routing Anomaly Detection
and Visualization. In: The 6th IEEE/IPIP International Conference on Dependable
Systems and Networks (DSN’05), Yokohama, Japan (2005)

15. Zhang, H., Arora, A., Liu, Z.: A Stability-Oriented Approach to Improving BGP
Convergence. In: The 23rd IEEE International Symposium on Reliable Distributed
Systems (SRDS’04), Florianópolis, Brazil (2004)

16. Wang, L., Massey, D., Patel, K., Zhang, L.: FRTR: A scalable mechanism for
global routing table consistency. In: Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’2004), Florence, Italy, pp.
465–474 (2004)

17. Pei, D., Wang, L., Massey, D., Wu, S.F., Zhang, L.: A Study of Packet Delivery
Performance During Routing Convergence. In: The 4th IEEE/IPIP International
Conference on Dependable Systems and Networks (DSN’03), San Francisco, U.S.A
(2003)

18. Chandrashekar, J., Duan, Z., Zhang, Z.L., Krasky, J.: Limiting Path Exploration
in BGP. In: The 24th IEEE INFOCOM (INFOCOM’04), Miami, U.S.A. IEEE
Computer Society Press, Los Alamitos (2005)

19. Pei, D., Zhao, X., Wang, L., Massey, D., Mankin, A., Wu, S., Zhang, L.: Improving
BGP Convergence through Consistency Assertions. In: The 21st IEEE INFOCOM
(INFOCOM’02), New York, U.S.A. IEEE Computer Society Press, Los Alamitos
(2002)

20. Duarte Jr. E.P., Santini, R., Cohen, J.: Delivering packets during the routing con-
vergence latency interval through highly connected detours. In: Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’2004), Florence, Italy, pp. 495–504 (2004)

21. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. SIAM Journal on Applied
Mathematics 9, 551–556 (1961)

22. Funagalli, A., Valcarenghi, L.: Restauration vs. WDM Protection: Is There an
Optimal Choice? IEEE Network (2000)

23. Rosen, E., Viswanathan, A., Callon, R.: RFC 3031: Multi-Protocol Label Switchin
(2001)

24. Hellstrand, F., Sharma, V.: RFC 3469: Framework for MPLS-based Recovery
(2004)

25. Correia, R.B., Pirmez, L., et al.: Rerroteamento Parcial Pró-Ativo em Redes
Baseadas em Circuito Virtual no Suporte ao Gerenciamento de Desempenho Pró-
Ativo. In: XXIII Simpósio Brasileiro de Redes de Computadores (SBRC’2005),
Fortaleza, Brazil (2005)

26. Medhi, D.: A Perspective on Network Restoration. Handbook of Optimization in
Telecommunications (2005)

27. Puype, B., Yan, Q., Colle, D., et al.: Multi-Layer Traffic Engineering in Data
Centric Optical Networks. In: COST266-IST OPTIMIST Workshop on Optical
Networks, Budapest, Hungary (2003)

28. Tanaka, S., et al.: Field Test of GMPLS All Optical Path Rerouting. IEEE Pho-
tonics Technology Letters 17(3) (2005)

On the Implementation of

Communication-Optimal Failure Detectors�

Mikel Larrea1, Alberto Lafuente1, Iratxe Soraluze1, Roberto Cortiñas1,
and Joachim Wieland2

1 The University of the Basque Country
20018 San Sebastián, Spain

{mikel.larrea,alberto.lafuente,iratxe.soraluze,roberto.cortinas}@ehu.es
2 RWTH Aachen University

52056 Aachen, Germany
joachim.wieland@rwth-aachen.de

Abstract. Several algorithms implementing failure detectors have been
proposed in the literature. In particular, we have proposed a family of
communication-efficient �P algorithms, i.e., algorithms using n links to
carry messages forever, being n the number of processes in the system.
Moreover, we have recently proposed a �P algorithm that uses only C
links, being C the number of correct processes. In this paper, we show
that C is the minimum number of links required to implement �P . We
also show that, assuming that there is at least one incorrect process,
C is optimal not only for �P but also for �S and Ω. We revisit our
Reliable Broadcast based communication-optimal �P algorithm, and
we show that, regarding QoS measures, it performs better than the
communication-efficient algorithms.

Keywords: Distributed algorithms, fault tolerance, Consensus, unreli-
able failure detectors.

1 Introduction

Unreliable failure detectors, proposed by Chandra and Toueg [5], have been used
to address the Consensus problem [16] and several related problems in asyn-
chronous crash-prone distributed systems. In this paper, we mainly focus on the
Eventually Perfect failure detector class, denoted �P , which satisfies (1) strong
completeness: eventually every process that crashes is permanently suspected
by every correct process, and (2) eventual strong accuracy: there is a time after
which correct processes are not suspected by any correct process. Nevertheless,
Consensus can be solved with a weaker failure detector class called Eventually
Strong, denoted �S, which satisfies strong completeness and eventual weak ac-
curacy: there is a time after which some correct process is not suspected by any
� Research partially supported by the Spanish Research Council, under grants

TIN2004-07474-C02-02 and TIN2006-15617-C03-01, the Basque Government, under
grant S-PE06IK01, and the Comunidad de Madrid, under grant S-0505/TIC/0285.

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 25–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

26 M. Larrea et al.

correct process. Specifically, a particular failure detector called Ω, equivalent to
�S, has been proved to be the weakest failure detector to solve Consensus [4].
The Ω failure detector provides eventual agreement on a common leader among
all non-faulty processes in a system. Specific algorithms for implementing Ω
and/or �S have been proposed in the literature, e.g., [1,2,3,11]. Note that since
�P is strictly stronger than �S, any implementation of �P trivially implements
�S. Observe also that �P can be easily transformed into Ω, e.g., by choosing
as leader the non-suspected process with lowest identifier.

In [13,15] we have proposed a family of heartbeat-based algorithms which im-
plement �P using a logical ring arrangement of processes. In these algorithms,
every process p tries to determine which is its correct successor in the ring,
i.e., the process to which p should send heartbeats forever, and also which is
its correct predecessor in the ring, i.e., the process from which p should receive
heartbeats forever. Attached to heartbeats, processes propagate around the ring
a list of suspected processes, which provides the properties of �P . This list is
updated whenever p receives a new heartbeat from its predecessor, and then
used to set p’s current successor in the ring. The algorithms are communication-
efficient following Aguilera et al. [1], i.e., eventually only n unidirectional links
carry messages forever. With regard to this performance measure, heartbeat-
based ring algorithms outperform other ring algorithms based on polling [10] or
algorithms using a centralized communication pattern [1,12]. By all means, algo-
rithms using an all-to-all communication pattern, as Chandra-Toueg’s algorithm,
are far away from being communication-efficient. Our communication-efficient
algorithms sporadically broadcast failure suspicions and —when required— sus-
picion refutations. Since the heartbeat flow keeps on following the ring ar-
rangement, and eventually no new broadcasts occur, communication efficiency is
preserved.

In the Brief Announcement of [14] we show that even communication-optimal
algorithms for �P can be implemented, in which eventually only C unidirec-
tional links carry messages forever, being C the number of correct processes.
The algorithm proposed in [14] does no longer propagate a list of suspected
processes. Instead, it uses a Reliable Broadcast primitive [5] to communicate
the sporadic suspicions and refutations. Doing like that, no information about
suspected processes has to circulate around the ring. Now, the list of suspected
processes satisfying the properties of �P is inferred directly by a process p from
its balance of suspicions and refutations received about every process q.

Our Contribution. In this paper, we show that C is the minimum number of
unidirectional links carrying messages forever needed for an algorithm to pro-
vide the properties of �P in a crash-prone system. Furthermore, when C < n, we
show that C is also minimal for Ω. We then revisit the communication-optimal
�P algorithm of [14], providing a correctness proof. We also evaluate its perfor-
mance in terms of QoS measures, comparing it to the communication-efficient
�P algorithm of [15].

Despite Ω has been extensively used to solve Consensus, we focus our work on
implementing communication-optimal failure detectors of the class �P , instead

On the Implementation of Communication-Optimal Failure Detectors 27

of providing specific implementations for Ω. This is mainly justified by the fact
that, as we will show, communication optimality is nearly the same for both
�P and Ω, and every �P failure detector trivially implements Ω. Moreover, for
certain problems [8] and Consensus protocols [17] failure detector �P is required.
Finally, �P is more natural, in the sense that all correct processes can produce
a list containing just the faulty processes, providing a higher degree of accuracy.
This may be a relevant QoS parameter for some applications.

The rest of the paper is organized as follows. In Section 2, we describe the
system model considered in this work. In Section 3, we show the communication
optimality results for �P and Ω. In Section 4, we revisit the algorithm of [14],
and provide a proof of correctness. In Section 5, we evaluate its performance.
Finally, Section 6 concludes the paper.

2 System Model

We consider a distributed system composed of a finite set Π of n > 1 processes,
Π = {p1, p2, . . . , pn}, that communicate only by sending and receiving messages.
Every pair of processes (pi, pj) is connected by two unidirectional and reliable1

communication links pi → pj and pj → pi.
Processes can only fail by crashing, that is, by prematurely halting. Moreover,

crashes are permanent, i.e., crashed processes do not recover. In every run of the
system we identify two complementary subsets of Π : the subset of processes that
do not fail, denoted correct, and the subset of processes that do fail, denoted
crashed. We use C to denote the number of correct processes in the system in
the run of interest, which we assume is at least one, i.e., C = |correct| ≥ 1.

We consider that processes are arranged in a logical ring. Without loss of
generality, process pi is preceded by process pi−1, and followed by process pi+1.
As usual, p1 follows pn in the ring. In general, we will use the functions pred(p)
and succ(p) respectively to denote the predecessor and the successor of a process
p in the ring.

Concerning timing assumptions, we consider a partially synchronous model
[5,7] which stipulates that, in every run of the system, there are bounds on
relative process speeds and on message transmission times, but these bounds
are not known and they hold only after some unknown but finite time (called
GST for Global Stabilization Time). Actually, the bounds must exist and hold
only for the C links that eventually form the ring of correct processes, i.e., the
links from every correct process to its correct successor in the ring. Hence, the
bounds must only hold for a linear number of links.

Finally, in the algorithms presented in this paper we assume that a local clock
that can measure real-time intervals is available to each process. Clocks are not
synchronized.
1 The definition of reliable link that we consider is the following: if both the sender and

the receiver do not crash, then all messages that are sent are eventually delivered.
Reliable communication is usually implemented using retransmission techniques and
acknowledgment messages.

28 M. Larrea et al.

Every process p executes the following:

To execute r-broadcast(m):
send m to all (including p)

r-deliver(m) occurs as follows:
when receive m for the first time

if sender(m) �= p then
send m to alla

end if
r-deliver(m)

a An optimization consists in not relaying m to p, sender(m), and the process q
from which m has been received for the first time (if q �= sender(m)).

Fig. 1. Reliable Broadcast by message diffusion

2.1 Reliable Broadcast

Reliable Broadcast is a communication primitive for asynchronous systems guar-
anteeing that all correct processes deliver the same set of messages. This set
includes at least all messages broadcast by correct processes. Formally, Reliable
Broadcast is defined in terms of two primitives, r-broadcast(m) and r-deliver(m),
and satisfies the following properties [9]:

– Validity. If a correct process r-broadcasts a message m, then it eventually
r-delivers m.

– Agreement. If a correct process r-delivers a message m, then all correct
processes eventually r-deliver m.

– Uniform integrity. For any message m, every process r-delivers m at most
once, and only if m was previously r-broadcast by sender(m).2

Figure 1 presents a simple Reliable Broadcast algorithm for asynchronous
systems with up to n − 1 crash failures [5]. Informally, when a process receives
a message for the first time, it relays the message to all processes and then
r-delivers it.

3 On Communication Optimality

In this section, we show that C, i.e., the number of correct processes in the system,
is the minimum number of unidirectional links carrying messages forever needed
for an algorithm to provide the properties of �P . Then, we show that, assuming
2 We assume that messages include the identity of the sender and a sequence number,

which make every message unique.

On the Implementation of Communication-Optimal Failure Detectors 29

that at least one process crashes, i.e., C < n, C is also minimal for implementing
Ω.3 Both results hold when there are at least two correct processes in the system,
i.e., C ≥ 2.

Theorem 1. C is the minimum number of unidirectional links carrying mes-
sages forever needed for an algorithm to provide the properties of �P in a crash-
prone system.

Proof. Given a run R, observe that every process must periodically inform that
it is still alive by sending a message, which after every incorrect process has
crashed gives us the minimum number of C unidirectional links. Otherwise, if
less than C unidirectional links carry messages forever, there is some correct
process p that eventually stops sending messages. Let t be the time instant in
which p stops sending messages. Consider now another run R′, identical to R
until time t, and assume that p crashes at time t in R′. For any correct process q,
if q does not eventually and permanently suspect p, then the strong completeness
property of �P is violated. Hence, q will eventually and permanently suspect p
in R′. Observe that both executions R and R′ are indistinguishable. Hence, in
run R q will also eventually and permanently suspect p, violating the eventual
strong accuracy property of �P .

Theorem 2. If at least one process crashes, then C is the minimum number of
unidirectional links carrying messages forever needed for an algorithm to provide
the property of Ω in a crash-prone system.

Proof. The proof is by contradiction. Assume that we have an implementation
of Ω in which only C − 1 unidirectional links carry messages forever. Observe
that such an implementation would be possible only if correct processes are
arranged in a tree topology, being the leader the root of the tree and propagating
heartbeat messages —directly or indirectly— to the rest of correct processes.4

Consider a run R of the algorithm in which C processes are correct and let t
be the time instant after which only C − 1 unidirectional links carry messages
forever. Consider now another run R′, identical to R until time t, and assume
that a process q different from the leader, which is correct in R, crashes at time
t in R′. Observe that both executions R and R′ are indistinguishable, and there
is no way for the leader to know that q has crashed, and hence it will not stop
sending messages to q. Since the number of correct processes in run R′ is C − 1,
the algorithm should use only C−2 unidirectional links to carry messages forever,
which contradicts the fact that the leader will not stop sending messages to q.

In [3], Aguilera et al. propose an algorithm implementing Ω such that eventually
only f links carry messages forever, being f the maximum number of processes
that can crash. They also show that in the crash-failure model no algorithm
using fewer than f links exists. Hence, if f = n − 1 (as in our system model),
Ω can be implemented with n − 1 links carrying messages forever, even if no
3 By equivalence, the reasoning regarding Ω applies to �S too.
4 Observe that a star is a particular case of a tree topology.

30 M. Larrea et al.

process crashes, i.e., C = n. However, the algorithm of [3] uses always n − 1
links, independently of the actual number of correct processes C. As we will see,
the algorithm we propose in this work, besides implementing �P , dynamically
adapts the number of links used to the actual number of correct processes.

4 Communication-Optimal Implementation of �P

In this section, we revisit our communication-optimal implementation of �P
of [14] that uses Reliable Broadcast, providing a correctness proof and show-
ing its optimality. In the algorithm, each process sends heartbeats to its suc-
cessor in the ring, and monitors its predecessor by hearing heartbeats from
it. Figure 2 presents the algorithm in detail, which uses a Balancep variable
for every process p, accounting suspicions and refutations for every process. If
Balancep(q) > 0 with q �= p, then p suspects q; else, q is trusted by p. As we
will see, Balancep provides the properties of �P . Every process p starts sending
periodically an (ALIV E, p) message to its successor in the ring, denoted by
the variable succp (Task 1). Also, every process p waits for periodical (ALIV E,
predp) messages from its predecessor in the ring, denoted by the variable predp.
If p does not receive such a message on a specific time-out interval of Δp(predp),
then p suspects that predp has crashed, and r-broadcasts a (SUSPICION ,
p, predp) message (Task 2). In Task 3, when p r-delivers a (SUSPICION , q,
r) message, p increments Balancep(r) and calls the update pred and succ pro-
cedure. Besides this, if r = p, i.e., p has been erroneously suspected by q, p
r-broadcasts a (REFUTATION , p) message. In Task 4, when p r-delivers a
(REFUTATION , q) message, p decrements Balancep(q), increments Δp(q),
and calls the update pred and succ procedure. Variables predp and succp are
updated from Balancep to the nearest predecessor and the nearest successor in
the ring having a non-positive balance respectively.5 If all the components of the
Balancep vector are positive, then p sets both predp and succp to p.

4.1 Correctness Proof

We show now that the algorithm of Figure 2 implements a failure detector of
class �P and that it is communication optimal. In the proof, we consider that
all the time instants are after all the incorrect processes have already crashed,
and all the messages they have sent before crashing have already been delivered.
We start making the following observations.

Observation 1. ∀p ∈ correct, eventually and permanently Balancep(p) = 0.
This derives from the following: (1) initially Balancep(p) = 0, (2) for every
(SUSPICION , −, p) message that p r-delivers in Task 3, eventually p r-delivers

5 Here we informally use the terms nearest predecessor (or nearest successor) of a
process p to denote the first process preceding (or succeeding) p following the ring
arrangement and fitting a particular condition.

On the Implementation of Communication-Optimal Failure Detectors 31

Every process p executes the following:

procedure update pred and succ()
(1) if ∀r : Balancep(r) > 0 then
(2) predp ← p
(3) succp ← p
(4) else
(5) predp ← p’s nearest predecessor r such that Balancep(r) ≤ 0
(6) succp ← p’s nearest successor r such that Balancep(r) ≤ 0
(7) end if
end procedure

(8) predp ← pred(p) {p’s estimation of its nearest correct predecessor}
(9) succp ← succ(p) {p’s estimation of its nearest correct successor}
(10) for all q ∈ Π :

Δp(q) ← default time-out interval
(11) for all q ∈ Π :

Balancep(q) ← 0

(12) cobegin

(13) || Task 1: repeat periodically
(14) if succp �= p then
(15) send (ALIV E, p) to succp

(16) end if

(17) || Task 2: repeat periodically
(18) if predp �= p and p did not receive (ALIV E, predp)

during the last Δp(predp) ticks of p’s clock then
(19) r-broadcast (SUSPICION , p, predp)
(20) end if

(21) || Task 3: when r-deliver (SUSPICION , q, r)
(22) Balancep(r) ← Balancep(r) + 1
(23) update pred and succ()
(24) if r = p then
(25) r-broadcast (REFUTATION , p)
(26) end if

(27) || Task 4: when r-deliver (REFUTATION , q)
(28) Balancep(q) ← Balancep(q) − 1
(29) Δp(q) ← Δp(q) + 1 {not needed if q = p}
(30) update pred and succ()

(31) coend

Fig. 2. Communication-optimal �P using Reliable Broadcast

32 M. Larrea et al.

in Task 4 a (REFUTATION , p) message that compensates the previous incre-
ment of Balancep(p), and (3) eventually every correct process stabilizes with its
correct predecessor in the ring, after which it stops r-broadcasting suspicions.

Observation 2. ∀p, if predp = q with q �= p then Balancep(q) ≤ 0. Also,
if succp = r with r �= p then Balancep(r) ≤ 0. This derives directly from
the fact that both predp and succp are only updated by p inside the procedure
update pred and succ().

Observation 3. For every pair of correct processes p, q, when no more failure
suspicions occur, Balancep(r) = Balanceq(r) for every process r. By the proper-
ties of Reliable Broadcast, both p and q r-deliver the same set of (SUSPICION ,
−, r) and (REFUTATION , r) messages. Consequently, both p and q apply the
same modifications to Balancep(r) and Balanceq(r) respectively.

Lemma 1. For every pair of consecutive correct processes q, p in the ring, even-
tually p stops r-broadcasting (SUSPICION , p, q) messages.

Proof. The proof is by contradiction. Assume that p r-broadcasts (SUSPICION ,
p, q) messages infinitely often. Since both p and q are correct, for each message
(SUSPICION , p, q) q will r-broadcast a (REFUTATION , q) message that
will be delivered by p. Upon delivery, p will increment Δp(q). Since the commu-
nication link between q and p is eventually timely, eventually Δp(q) will reach
the unknown bound on message transmission times, after which p will receive a
(ALIV E, q) always before Δp(q) expires, and p will no more suspect q in Task 2.
This contradicts the fact that p suspects q infinitely often.

Lemma 2. For every pair of non-consecutive correct processes q, p in the ring,
eventually p stops r-broadcasting (SUSPICION , p, q) messages.

Proof. By Lemma 1, eventually p will permanently monitor another correct pro-
cess r, being r its correct predecessor in the ring. After that, p will never r-
broadcast any (SUSPICION , p, q) message any more.

Lemma 3. For every pair of correct processes p, q, eventually and permanently
Balancep(q) = 0.

Proof. Follows from Lemma 1 and Lemma 2, and the fact that, being initially
Balancep(q) = 0, by the algorithm p delivers the same number of (SUSPICION ,
−, q) and (REFUTATION , q) messages, compensating the increment and
decrement operations over Balancep(q) = 0.

Lemma 4. For every incorrect process q, eventually and permanently
Balancep(q) > 0 for every correct process p.

Proof. Note that after q crashes it will not be able to r-broadcast any message
(REFUTATION , q). Also, at least process r, being r the correct successor of
q in the ring, will eventually r-broadcast a (SUSPICION , r, q) message that
q will not refute, and consequently Balancer(q) > 0 permanently. Then, by
Observation 3, Balancep(q) > 0 for every correct process p.

On the Implementation of Communication-Optimal Failure Detectors 33

Lemma 5. Eventually, for every correct process p, predp will be permanently
set to p’s correct predecessor in the ring, and succp will be permanently set to
p’s correct successor in the ring.

Proof. Follows directly from Lemma 3, Lemma 4, and Observation 2.

Theorem 3. The algorithm of Figure 2 implements a failure detector of class
�P.

Proof. From Lemma 3 and Lemma 4, for every correct process p, eventually and
permanently Balancep(q) = 0 for every q ∈ correct, and Balancep(r) > 0 for
every r ∈ crashed. The rule “if Balancep(q) > 0, then p suspects q; else, p
does not suspect q” provides the properties of strong completeness and eventual
strong accuracy of �P .

Theorem 4. The algorithm of Figure 2 is communication-optimal, i.e., even-
tually only C links carry messages forever.

Proof. From Lemma 5, for every correct process p, eventually and permanently
succp will be set to p’s correct successor in the ring and, by Task 1, p will
send (ALIV E, p) messages to it forever. No other periodical messages will be
sent. Furthermore, since no more suspicions will occur, no new SUSPICION
(and hence REFUTATION) messages will be broadcast. Thus, if there are C
correct processes in the system, just a number of C unidirectional links will be
permanently used.

Observe that if there is just one correct process in the system, i.e., C = 1, the
algorithm of Figure 2 eventually uses no links, by an optimization introduced in
Task 1. Hence, when C = 1 both �P and Ω can be implemented using 0 links
carrying messages forever.

5 Performance Evaluation

Figure 3 summarizes the costs of the communication-efficient algorithm of [15]
and the communication-optimal algorithm presented in this paper, in terms of
the number of links used forever and the number of messages needed to manage
a suspicion. Chandra-Toueg’s all-to-all algorithm is also included as a reference.

Besides communication efficiency, there are QoS measures that are of interest
when evaluating the performance of failure detector algorithms, as those related

Periodic cost Sporadic cost
Algorithm (#links used forever) (#msgs to manage a suspicion)

Chandra-Toueg [5] C(n − 1) 0

Comm.-efficient [15] n O(n)

Comm.-optimal (Figure 2) C O(n2)

Fig. 3. Costs of different algorithms implementing �P

34 M. Larrea et al.

to the accuracy of the information provided to querying processes. In particular,
we focus on the query accuracy probability, defined as the probability that a
failure detection module which is queried by its associated process gives the
right answer. This measure is based on [6], but has been extended in this work
to scenarios with more than two processes.

We have used the ns-2 simulator (http://www.isi.edu/nsnam/ns/) to test the
comparative performance of the algorithms. In Figure 4 we show the simula-
tion settings for a typical local area network scenario. The simulation generates
message delays at random with a uniform distribution. However, we have set
minimum and maximum message bounds. Apparently, this contradicts our par-
tially synchronous system model. Nevertheless, the algorithms do not exploit the
knowledge of the maximal message delay when initializing the timeouts. This al-
lows us to generate erroneous suspicions under the same conditions for both
algorithms. Moreover, from a practical point of view the setting of a maximum
message delay allows to determine the duration of the simulations.

Parameter Value

Minimum message delay 0.001

Maximum message delay 0.005

Periodicity of ALIV E messages 0.5

Initial timeouts 0.5

Timeout increment 0.001

Fig. 4. Simulation settings (in seconds)

The tests have been carried out for a number of nodes going from 3 to 24, with
a duration of 2000 seconds, that has been empirically proved to be sufficient for
comparative purposes. In fact, using the settings of Figure 4, after this duration
the simulations have either stabilized or are near stabilization. Every simulation
has been executed a sufficiently large number of times.6 We assume that no
process crashes during the simulation. This assumption does not really lose any
generality. On the one hand, in our algorithms erroneous suspicions are actually
more complex to handle than real crashes.7 On the other hand, although a crash
during the execution of the Reliable Broadcast may delay the delivery of the
message, the probability of such a failure in practice is very low. Also, this delay
is really small in a LAN, thus our assumption has not any impact in the QoS
measures.

Figure 5 shows the average results obtained. For clarity, values express the
complement of the right answer probability, i.e., the probability that a failure
detection module gives a wrong answer. In the communication-efficient algorithm
of [15], the circulation of the list of suspected processes around the ring, while

6 We have repeated every simulation 20 times. In fact, the averages become stable
after few executions.

7 Observe that crashed processes do not send any refutation message.

On the Implementation of Communication-Optimal Failure Detectors 35

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 24 12 6 3

B
ad

 a
ns

w
er

 p
ro

ba
bi

lit
y

processes

Comm. Optimal
Comm. Efficient

Improved Comm. Efficient
Chandra-Toueg

Fig. 5. Comparative query accuracy, expressed as bad answer probability (percentage)

required for a correctness point of view, had a negative impact over the newest
information about suspicions-refutations sent by processes. For example, a list
of suspected processes received from the predecessor in the ring may cancel a
recent suspicion directly received from another process. That is why, as shown in
Figure 5, we have also tested an improved implementation of the communication-
efficient algorithm that mitigates this effect by delaying updates.

In Figure 5, it can be observed that both the communication-optimal and
Chandra-Toueg’s algorithms provide constant bad answer probabilities (negligi-
ble in the latter). This is due to the use of an all-to-all communication pattern.
However, while Chandra-Toueg’s algorithm uses this pattern periodically and
forever, the communication-optimal algorithm uses it sporadically, and eventu-
ally stops using it. Regarding the communication-efficient algorithms, the afore-
mentioned effect caused by the circulating lists produces worse results, partially
mitigated in the improved version.

6 Conclusion

In this paper, we have explored communication efficiency, a performance pa-
rameter that refers to the number of unidirectional links that carry messages
forever. We have shown that failure detector class �P requires at least C unidi-
rectional links to carry messages forever, being C the number of correct processes.
Moreover, when at least one process crashes, C links are also required for �S
and Ω. We have revisited our communication-optimal �P algorithm of [14] and

36 M. Larrea et al.

given a proof of correctness and optimality. Since this algorithm uses exactly
C unidirectional links to carry messages forever, it can be derived that com-
munication optimality for �P is achieved. Since �P trivially implements Ω,
communication optimality can be considered achieved also for �S and Ω failure
detectors.

Also, we have evaluated the performance of our algorithm compared to the
communication-efficient algorithm of [15], showing that it performs better in
terms of QoS. The price to pay is a higher cost in terms of the number of mes-
sages sent for managing suspicions. In this regard, our communication-optimal
algorithm uses Reliable Broadcast to communicate suspicions and refutations,
involving a quadratic number of messages. Since this can be a drawback in some
scenarios, e.g., very large networks, our current research is focused on variants
of the algorithm in which, while preserving QoS, Reliable Broadcast is replaced
by point-to-point communication.

Acknowledgments. We are grateful to the anonymous reviewers for their com-
ments, which helped to improve this paper.

References

1. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer,
Heidelberg (2001)

2. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
Ω with weak reliability and synchrony assumptions. In: Proceedings of the 22nd
ACM Symposium on Principles of Distributed Computing (PODC’2003), Boston,
Massachusetts, pp. 306–314 (July 2003)

3. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Pro-
ceedings of the 23rd ACM Symposium on Principles of Distributed Computing
(PODC’2004), St. John’s, Newfoundland, Canada, pp. 328–337 (July 2004)

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4), 685–722 (1996)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

6. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors.
IEEE Transactions on Computers 51(5), 561–580 (2002)

7. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35(2), 288–323 (1988)

8. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure detector to boost
obstruction-freedom. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 399–412.
Springer, Heidelberg (2006)

9. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Mul-
lender, S.J. (ed.) Distributed Systems, 2nd edn., ch. 5, pp. 97–146. Addison-Wesley,
Reading (1993)

10. Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreliable
failure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC 1999.
LNCS, vol. 1693, pp. 34–48. Springer, Heidelberg (1999)

On the Implementation of Communication-Optimal Failure Detectors 37

11. Larrea, M., Fernández, A., Arévalo, S.: Optimal implementation of the weakest
failure detector for solving consensus. In: Proceedings of the 19th IEEE Symposium
on Reliable Distributed Systems (SRDS’2000), Nurenberg, Germany, pp. 52–59
(October 2000)

12. Larrea, M., Fernández, A., Arévalo, S.: Eventually consistent failure detectors.
Journal of Parallel and Distributed Computing 65(3), 361–373 (2005)

13. Larrea, M., Lafuente, A.: Brief announcement: Communication-efficient implemen-
tation of failure detector classes �Q and �P . In: Fraigniaud, P. (ed.) DISC 2005.
LNCS, vol. 3724, pp. 495–496. Springer, Heidelberg (2005)

14. Larrea, M., Lafuente, A., Wieland, J.: Brief announcement: Communication-
optimal implementation of failure detector class �P . In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 569–571. Springer, Heidelberg (2006)

15. Larrea, M., Lafuente, A., Wieland, J.: Communication-efficient implementation of
�P with reduced detection latency. Technical Report EHU-KAT-IK-02-06, The
University of the Basque Country (February 2006), Available at
http://www.sc.ehu.es/acwlaalm/

16. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM 27(2), 228–234 (1980)

17. Wu, W., Cao, J., Yang, J., Raynal, M.: A hierarchical consensus protocol for mobile
ad hoc networks. In: Proceedings of the 14th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP’2006), Montbeliard-
Sochaux, France, pp. 64–72. IEEE Computer Society Press, Los Alamitos (2006)

http://www.sc.ehu.es/acwlaalm/

Connectivity in Eventually Quiescent Dynamic

Distributed Systems�

Sara Tucci Piergiovanni and Roberto Baldoni

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Abstract. A distributed dynamic system is a fully distributed system
subject to a continual arrival/departure of the entities defining the sys-
tem. Another characterizing dimension of these systems is their, possibly,
arbitrary large size (number of entities) and the possible arbitrary small
part of the system a single entity directly interacts with. This interac-
tion occurs through data exchange over logical links, and the constantly
changing graph, formed by all links connecting entities, represents the
overlay network of the dynamic distributed system. The connectivity of
such overlay is of fundamental importance to make the whole system
working. This paper gives a precise definition of the connectivity prob-
lem in dynamic distributed systems while formally defining assumptions
on arrival/departure of entities and on the evolution of the system size
along the time. The paper shows the impossibility of achieving connec-
tivity when an arbitrary large number of entities may arrive/depart con-
currently at any time, doing so for an arbitrarily long time. A solution
is presented achieving overlay connectivity during quiescent periods of
the system: periods in which no more arrivals and departures take place.
The paper conveys the fact that the finite but not known duration of the
perturbed period before quiescence makes the solution of the problem far
from being trivial. The paper also provides a simulation study showing
that the solution not only achieves connectivity in quiescent periods but
it rearranges entities in an overlay that shows good scalability properties.

1 Introduction

Recently researchers have been paying more and more attention to so-called dy-
namic systems. Basically named in the peer-to-peer literature, dynamic systems
do not have an agreed and precise definition yet, but it is possible to recognize
some features characterizing them [4,6], listed below:

1. Full decentralization. A dynamic system is a fully decentralized system
in which each entity plays the same role;

2. Dynamicity. Dynamicity concerns a possible continually changing mem-
bership of the very entities defining the system;

� This work has been done in the context of the European Network of Excellence
ReSIST (Resilience for Survivability in IST).

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 38–56, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Connectivity in Eventually Quiescent Dynamic Distributed Systems 39

3. Locality. Locality concerns how entities interact in the system. Generally
speaking, the system may show a possible arbitrary size while each entity
has a possible arbitrary small knowledge about the system it is member of.
It is also said that this knowledge defines the entity’s neighborhood, i.e., the
other entities an entity will directly interact and communicate with.

These characteristics may be abstracted in a unique unifying concept: the
concept of a dynamic graph (also called overlay network) that includes as vertices
all system entities and that depicts through its arcs the neighbors each entity
knows of, along the time.

The concept of overlay is well-known in the peer-to-peer literature, but in
this paper we want to attribute to this concept an abstract flavor by simply
considering this overlay as the communication graph of the system. In static
distributed systems this graph is defined at the very beginning and may change
only by losing vertices (if entities fail) or arcs (if links shutdown). In a sense the
communication network in static systems abstracts the physical network and
the communication network topology is tightly coupled to the physical network
topology. Contrarily, in dynamic systems the communication network is defined
on top of – and generally independently of – the underlying physical computer
network by a specific overlay protocol always running at each entity. This pro-
tocol is in charge to set and maintain the entity’s neighborhood, and its output
defines a new communication graph for each change it makes.

In this paper we want to formally tackle the problem of keeping the dynamic
overlay connected over the time. It is obvious that the connectivity of the overlay
is of fundamental importance as it enables communication among entities. If the
overlay is connected any pair of entities is able to communicate through at least
one path. On the other hand, losing connectivity leads to a partitioned overlay. In
a partitioned overlay, entities group in components and communication between
entities in different components stops. The logical nature of the network gives
here the opportunity of designing an overlay protocol that could try to avoid
logical partitions or detect and recover from them 1.

Unfortunately, there is no formal definition of the overlay connectivity prob-
lem, and the precise definition of an appropriate computing model where to
study the problem is still an open research issue [4]. In particular, [4] proposes a
computing model embedding the concept of dynamic communication graph. This
graph varies along the time by adding and removing (possibly concurrently) an
arbitrary large number of entities. In this computing model, however, the com-
munication graph is assumed always connected, i.e., the existence of an overlay
protocol able to maintain the dynamic graph connected all the time is assumed.
The study about the implementability of this assumption is exactly the scope of
this paper.

This study led to the following contributions: (i) the adoption of a distributed
computing model where the connectivity problem may be solved; (ii) a formal

1 In the reminder of this paper the term partition will be always referred to logical
partitions, physical partitions are not handled.

40 S. Tucci Piergiovanni and R. Baldoni

specification of the connectivity problem and (iii) a protocol which satisfies the
specification under the model proposed.

More specifically, the system model assumes an arbitrarily large number of
processes that along the time join and leave the system when considering the ac-
cess to the overlay of simultaneous joins is not serialized. Specifically, we assume
a finite arrival model [10] where the (finite) number of processes simultaneously
joining/leaving the overlay is arbitrary and unknown. Assuming a finite arrival
model has the following implications:

– Each system run can be divided in two intervals of time: a first finite interval
in which joins and leaves take place (perturbed period) and then an infinite
period of time in which no more join and leave occurs (quiescent period).
The perturbed period lasts for an unknown time.

– The overlay has an unknown (but finite) size where process failures accu-
mulate over time as processes join. Thus, the number of failures tend to an
arbitrary large number as time passes and the proportion among the total
number of processes and faulty ones, at any time, is arbitrary2.

As any run of these systems can be characterized by a perturbed period fol-
lowed by a quiescent period, we call these systems eventually quiescent dynamic
systems.

Then, the paper presents the connectivity problem specified through a prop-
erty called eventual strong connectivity, which expresses the ability for overlay
entities to communicate from an arbitrary time onwards. Complementary prop-
erties are specified to guarantee overlay progress, i.e., to avoid trivial solutions
that systematically prevent joins to the overlay.

At this point, it may seem trivial solving eventual strong connectivity in an
eventually quiescent dynamic system. However, this is far from being true for
the following reasons:

– The paper shows that there exists no protocol which can assure connectivity
during the perturbed period, i.e., a partition may occur during this period.
This comes from the effect of the admitted level of concurrency. In fact,
many overlay protocols proposed in the literature are proved to maintain
connectivity in face of a limited and a priori-known level of dynamicity[6],
while in this paper we assume that an arbitrary number of joins and leaves
may happen concurrently.

– No protocol can detect when quiescence begins.

From the first point it follows that any protocol can achieve connectivity only in
quiescent periods. Moreover, from the second point, it follows that it has to do
its best during the perturbed period to face partition occurrences. In particular,
any protocol must detect any partition and subsequently recover it.
2 It is worth to note that this computational model departs from classical static dis-

tributed system models in which: (i) the number of processes is fixed and a-priori
known and (ii) solutions are designed to behave correctly under fixed and known
threshold of failures.

Connectivity in Eventually Quiescent Dynamic Distributed Systems 41

In this paper we present a protocol able to eventually detect and restore
connectivity each time a partition occurs and able to output an overlay in the
quiescent period which is an undirected tree. The tree topology eases the task
of detecting partitions. More specifically, each failure triggers a restoring and
in order to reduce the number of restorings, voluntary leaves are managed in
a different way than failures. In particular, voluntary leaves are handled in an
active way, i.e., a piece of code is executed before the actual deletion of the
vertex from the overlay 3.

Through an experimental analysis, we also investigate the nature of the trees
the protocol is able to output during quiescence, dependently on the level of
dynamicity experienced during the perturbed period. In particular we found
that the higher the level of dynamicity was, the more unbalanced the resulting
tree becomes, showing a few number of vertices with a huge number of children.
Then we discuss and evaluate a mechanism to converge to a k − ary balanced
tree when the system becomes quiescent.

The paper is organized as follows. Section 2 presents our distributed com-
puting model while Section 3 defines the connectivity problem and presents the
impossibility of ensuring connectivity all the time. Section 4 presents a tree-based
protocol solving the problem. In Section 5 the overlay maintained by the pro-
tocol is evaluated. Section 6 presents related work, and Section 7 concludes the
paper. Due to lack of space the proof of the protocol correctness is not included
but it can be found in [12].

2 System Model and Basic Definitions

We consider an infinite set of processes Π , uniquely identified. We denote pro-
cesses by i, j, k. Processes communicate by exchanging messages through point-
to-point reliable channels. We assume no bound on process relative speeds and
message transmission delays. A process may be correct or faulty. A correct pro-
cess never fails. A faulty process fails by crashing. To simplify the description
without losing generality, we assume the existence of a fictional global clock,
whose output is the set of positive integers denoted by T .

Process State. Each process i ∈ Π has a finite set i.X of variables x ∈ Π ∪
{nil}, where nil is a special process that does not belong to Π . There is no
communication channel from/to nil. i.x denotes a neighbor variable x of process
i. By definition the nil process does not have any neighbor variable. The state
of a process i is represented by i.X . Each neighbor variable i.x initially assumes
a nil value.

Overlay Definition. At any time, the global state constituted by the set of pro-
cesses and their neighbor variables define the overlay. Formally,

Definition 1 (Overlay O(t)). The overlay O(t) is the set constituted by each
pair 〈i, i.X〉 : ∃i.x ∈ i.X �= nil at time t.
3 In [11] is shown that, without failures, connectivity can be assured all the time.

42 S. Tucci Piergiovanni and R. Baldoni

Any process i : 〈i, i.X〉 ∈ O(t) is called a vertex of the overlay O(t).

Process Actions. Each process i is characterized by the following actions: initi,
joini, leavei, stopi.

The initi action is an output action coming from the outside world (by an
application). The effect of the initi action is the initialization of the neighbor
variables.

The joini action is an internal action. The effect of the joini action is the
assignment of a non-nil value to some neighbor variable of i, from a state in
which all neighbor variables have a nil value, i.e., the joini action determines
the addition of the process i to the overlay.

The leavei action is an internal action. The effect of the leavei action is the
assignment of nil values to each neighbor variable of i, from a state in which at
least one neighbor variable has a non-nil value, i.e. the leavei action determines
the deletion of the process i from the overlay.

The stopi action is an input action that models a crash of the process (it is
not actually executed). The effect of this action is the same for the leavei action,
i.e., the stopi action determines the deletion of the process i from the overlay.

The need of using two different actions for leaves and failures (stopi and leavei

respectively) gives the opportunity of treating these two events in a different
manner, as done in the protocol of Section 4.

Eventually Quiescent Dynamicity. We assume a finite arrival model [2,7,9], i.e.,
the number of processes in the system is infinite but only finitely many might
be added to the overlay for any system execution. The admitted level of simul-
taneous concurrency allows the number of processes concurrently added/deleted
to/from the overlay at any time to be finite, arbitrary and unknown. This im-
plies that at any time t the number of pairs 〈i, i.X〉 ∈ O(t) is finite but can grow
until an unknown bound. Once a vertex i is deleted from the overlay (by leavei

or stopi), it is deleted forever. This assumption is not restrictive as a process
can become a vertex with a different identifier an unbounded number of times
(remember that Π , the set of processes, is infinite).

A vertex may be stable or transient. A stable vertex, once added to the overlay,
belongs to the overlay forever. A transient process belongs to the overlay only a
finite interval of time.

The contact() function. Any process, to be added to the overlay, must set one
(or more) of its own neighbor variables to a non-nil value. The need for getting at
least one vertex identifier arises as no a-priori knowledge is assumed. To join the
overlay, a process invokes a contact() function. The contact() function returns a
set of processes called contacts.

3 The Overlay Connectivity Problem

The goal of an overlay protocol is to dynamically manage the overlay in order
to add and delete vertices while keeping the overlay connected. In the following,

Connectivity in Eventually Quiescent Dynamic Distributed Systems 43

we precisely define the properties that such a protocol should ensure. Namely,
we give (i) a property which captures a fundamental requirement on the state of
the overlay and (ii) a set of properties that guarantee the progress of the overlay.

3.1 Eventual Strong Connectivity

The overlay O(t) is said to be connected if for any pair of vertices there is at
least a path of neighbor variables connecting them. At any time the overlay may
be viewed as a directed graph (digraph) with an arc (i, j) iff j ∈ i.X . With some
abuse of terminology we will refer to the overlay either as a global state or as
the graph defined by its neighbor variables.

A directed path from i to j at time t is denoted by i →t j and is defined as
follows:

Definition 2 (Directed Path). For any i, j : 〈i, i.X〉, 〈j, j.X〉 ∈ O(t), then
i →t j iff at time t one of the following conditions holds:

∃i.x ∈ i.X : i.x = j or ∃k ∈ Π : (i →t k) ∧ (k →t j)

Two vertices are weakly connected if there exists a directed path in between;
more precisely:

Definition 3 (Weak Connection between Two Vertices). For any i, j :
〈i, i.X〉, 〈j, j.X〉 ∈ O(t) (i may be equal to j) are weakly connected, iff i →t

j ∨ j →t i.

Two vertices are strongly connected if there exist two directed paths (one in each
direction) in between; more precisely:

Definition 4 (Strong Connection between Two Vertices). For any i, j :
〈i, i.X〉, 〈j, j.X〉 ∈ O(t) (i may be equal to j) are strongly connected, iff i →t

j ∧ j →t i.

The following property, called Eventual Strong Connectivity (ES), guarantees
that every pair of vertices in the overlay are strongly connected from an arbitrary
point of time onwards. A protocol ensuring eventual strong connectivity is not
necessarily able to maintain strong connectivity at any time, e.g., some overlay
disconnection is allowed. In this case the protocol should be able to restore the
overlay. The meaning of having an eventual connectivity instead of a connectivity
at any time comes from the impossibility of maintaining connectivity at any time
in the model assumed (see Section 3.3).

Property 1 (Eventual Strong Connectivity (ES)). ∃t : ∀t′ ≥ t,

∀i, j : 〈i, i.X〉, 〈j, j.X〉 ∈ O(t′) ⇒ (i →t′ j) ∧ (j →t′ i)

44 S. Tucci Piergiovanni and R. Baldoni

3.2 Overlay Progress

The ES property characterizes the connectivity of an overlay that may change
arbitrarily often due to finite arrival model assumed. However, a trivial (and
bogus) connectivity maintenance protocol may systematically avoid the addition
of any element in the overlay.

Thus, to prevent trivial implementations, properties on the progress of the
overlay are needed. We define two different progress properties: Global Progress
and No-Lockout.

Property 2 (Global Progress). If there exists a correct i ∈ Π that executes the
joini action at time t, then ∃t′, j : t′ > t ∧ 〈j, j.X〉 ∈ O(t′) ∧ 〈j, j.X〉 �∈ O(t).

This property does not guarantee that the access to the overlay is granted to
all processes executing the connectivity protocol, i.e., it allows a process j to
be repeatedly granted the access to the overlay, while another process i trying
to obtain the access is forever prevented from doing so. The following stronger
progress property precludes this scenario.

Property 3 (No-Lockout). For each correct process i ∈ Π that executes the joini

action, ∃t : 〈i, i.X〉 ∈ O(t).

3.3 Impossibility of Avoiding Overlay Partitions

Each graph has its level of connectivity that defines the resilience the graph
has to vertex removal. More formally, the connectivity level of a graph is the
minimum number of vertices that must be removed, to disconnect it. A graph is
said to be k-connected if it disconnects by removing at least k vertices.

Let us remark at this point that the only way to tolerate any number of
concurrent failures is to maintain a clique along the time, while maintaining
a topology with some a priori-defined level of connectivity t means tolerating
an arbitrarily small number of simultaneous failures with respect an arbitrary
system size N , since it could be t << N at some point of time.

Thus, the aim of this section is proving that even starting from an overlay
with a clique topology, the way in which vertices can arrive and depart may
lead the overlay to show a monotonically decreasing level of connectivity, until
disconnection. Let us consider ideally that there is a clique of k vertices, in a
system, thus, starting with k vertices. The decrease of the overlay connectivity
is due to the following facts:

– Impossibility of maintaining a clique (see below) along the time when con-
sidering non-serialized access of an arbitrarily large number of concurrent
joins. The number of vertices of the overlay in this case may increase to
some N > k while the level of connectivity remains k (this happens, for
instance, when each new vertex connects with k arcs to the k vertices of the
original clique).

Connectivity in Eventually Quiescent Dynamic Distributed Systems 45

– Now, the departure of one of the k vertices which belonged to the original
clique makes the connectivity of the overlay decreasing to some h < k.

Note that this pattern may provoke a disconnection if all k vertices in the
original clique simultaneously depart.

The Impossibility of a Clique. We give a formal proof of the impossibility of
maintaining a clique at any time. The proof is based on the following abstract
solution of the problem. Let us consider two atomic operations, namely contact()
and update(). contact() is a a very powerful contact function that allows pro-
cesses to get the complete snapshot of the overlay at the time they invoke the
function. contact() returns in contacts the finite number of vertices in the over-
lay. Then, on the basis of the information got from the contact function, the
process enters the overlay invoking an update() function. Once the update func-
tion returns the process has been added in the overlay 4. The update consists in
adding i as new neighbor of each vertex in contacts and adding each vertex in
contacts as neighbor of i.

Let us note that at the heart of the impossibility lies the non-atomic execution
of contact() and the subsequent update(). In fact, this modelling let us consider
a non-serialized access to the overlay and the effect of an arbitrary number of
concurrent leaves/failures. Formally:

Let us denote as |O(t)| the number of vertices of the overlay O at time t.

Theorem 1. If there exists a time t: ∀〈i, i.X〉 ∈ O(t), i.X variables define
a clique, then there exists a time t′ > t in which the graph defined by each
〈i, i.X〉 ∈ O(t′) it is not a clique and has connectivity k < (|O(t′)| − 1).

Proof. Let us suppose by contradiction that for all t′ > t, the graph defined
by 〈i, i.X〉 ∈ O(t′) is a (undirected) clique. This implies that for each t′ > t,
∀〈i, i.X〉, 〈j, j.X〉 ∈ O(t′), ⇒ j ∈ i.X ∧ i ∈ j.X .

Let us consider any run R in which only two processes i, j ∈ Π are added
to the overlay after time t. In particular, they invokes the contact() function
at the point of time, respectively, tri , t

r
j > t and the update() function at the

point of time, respectively, twi , twj > max(tri , t
r
j). The contact() function returns

all processes in O(t) (not comprising i and j). Then at time t′ = max(twi , twj)
the overlay O(t′) contains 〈i, i.X〉 and 〈j, j.X〉 but i �∈ j.X and j �∈ i.X with a
connectivity k = |O(t)| − 1 = |O(t′)| − 3 contradicting the initial hypothesis.

4 The Protocol

This sectionpresents the protocol. Section 4.1 contains a detaileddescription of the
protocol, while Section 4.2 presents the assumptions underlying the correctness of
the protocol. In particular, assumptions about the contact() function and the type
of used failure detection are discussed, giving an intuition of their necessity.
4 To avoid to solve our problem with the contact function, we also suppose that the

invocation of the contact function is only intended to solve the bootstrap, i.e., it can
be invoked at most once and before the invocation of the update() function.

46 S. Tucci Piergiovanni and R. Baldoni

4.1 Protocol Description

Our protocol arranges the vertices of the overlay in a routed tree topology.
A process i that wishes to join the overlay establishes a connection with an
arbitrary node of the tree j, becoming a child of j. Note that any number of
nodes (less than the number of current nodes in the overlay) may simultaneously
be added to the overlay.

The tree may disconnect because of any leave or failure, however, leaves and
failure are managed in a different manner. In particular, leaves are handled in
an active way: before leaving any node repairs the tree without causing a parti-
tion. More specifically, a node i that wishes to leave the overlay ensures, before
leaving, that its sub-tree (rooted by i) is being connected to i’s parent. Adjacent
and concurrent leaves on the same branch are properly managed establishing a
departure order.

Any non-leaf failure, on the other hand, causes a partition. The recovery from
the partition is enabled by a dynamic restoring mechanism. This mechanism
provides that any i’s failure in the tree triggers a re-connection of the sub-tree
routed by i to another live node in the tree. In this case, the re-connection must
be carefully handled to avoid scenarios in which i reconnects to a node belonging
to its sub-tree. To this end, upon joining, nodes set a particular variable called
rank and re-connection is driven by the node ranking defined at the join time.
This mechanism allows to properly select a new parent not belonging to the
disconnected sub-tree.

Process state. In the following the overlay will be denoted as T (t). Each element
of T (t) is composed of a pair 〈i, (i.parent, i.children)〉 where i.parent and each
x ∈ i.children are neighbor variables. With respect to the process state described
in Section 2, the state is enriched by the variable s and the variable rank; the
variable s can contain values {in, out, joining, leaving, restoring}, while rank
is a natural number.

Process actions. Each process i performs a Tree() task to maintain the overlay.
We detail the effects of actions initi, joini, leavei described in Section 2. The
initi action: (i) it initializes the neighbor variables to nil values 5; (ii) it initializes
the s variable to out and (iii) invokes the Tree(). The joini action sets the s
variable to joining. The leavei action sets the s variable to leaving.

T (t) initialization. The overlay is initialized by an initiator r, i.e., T (t0) =
〈r, (r.parent = r, ∀x ∈ r.children, x := nil)〉 ∧ r.state = in. It means that r
is a special process with an initr action occurring at time t0, which is slightly
different from the init of all other processes. Upon the initr action, r (i) sets
s := in, (ii) r.parent := r and ∀x ∈ r.children, x := nil, and (iii) r.rank = 0.
Then, r invokes task Tree().
5 The set of neighbor variables is unbounded, i.e., the number of neighbor variables

is a-priori-unknown, thus this static initialization models a dynamic initialization of
neighbors variables.

Connectivity in Eventually Quiescent Dynamic Distributed Systems 47

The Tree() task. The Tree() task handles the addition/deletion 6 of the pair
〈i, (i.parent, i.children)〉 to/from T (t), i.e., it sets and updates neighbor variables.

As soon as a process i wishes to join the overlay, it sets its variable s to
joining. Any vertex in the tree wishing to leave the overlay sets variable s to
leaving. Any vertex in the tree wishing to restore after disconnection has its s
variable equal to restoring. Tree() handles the s state transitions: [joining/in],
[leaving/out] and [restoring/in]. The completion of the transition [joining/in]
at time t denotes the addition of the pair 〈i, (i.parent, i.children) to T (t). The
completion of the transition [leaving/out] at time t′, denotes the deletion of the
pair 〈i, (i.parent, i.children)〉 from T (t). With this mechanism, all in processes
are vertices of the tree, while all out processes are not vertices of the tree, i.e.,
each out process i has i.parent = nil ∧ ∀x ∈ i.children, x = nil.

A faulty vertex disconnects all its sub-tree (if any). To cope with faults Tree()
has access to a failure detector module FDi reporting a list of faulty processes.
In this case all children enter a restoring state when their FD module reports
their parent. Tree() recovers the overlay reconnecting restoring nodes to a new
live parent.

In Figure 3 the Tree() pseudo-code is shown. In the following we detail the
mechanism to join, leave, and restore.

The join mechanism. When the variable i.s assumes the joining value (line 4),
i obtains a vertex a of the tree through the contact() function. Then i sends
a “JOIN” message to a (line 5). Upon receiving the “JOIN” message, a adds
i to its children if its a.s = in (the role of the rank variable is detailed for
the restore mechanism), by setting a.children to i and sending an “ACK JOIN”
message back to i (lines 16,19). Upon receiving the “ACK JOIN” message, i
sets i.parent to a (line 8) and sets the variable i.s = in (lines 31-32). At this
point the [joining/in] transition completes. With this mechanism, if the joining
process establishes its connection at time t with a vertex j, i.e., i →t j, then
there exists a time t′ < t in which j →t′ i (see Fig.1). This mechanism allows to
couple i to a possible transient parent. As we see in the following, this parent
before leaving will give a notice to all its children, i comprised. At line 9, the
process i sets also its own variable i.rank to the rank of its parent plus one (not
shown in Fig.1).

Due to concurrency, asynchrony, and failures the a vertex given by the contact()
function could be out or failed before receiving the “JOIN” message from i 7. In
this case we assume that FDi will report a in its list, at this point i restarts by
getting another contact a.

The leave mechanism. When the variable i.s assumes the leaving value, the
protocol allows to update the i’s neighbors before deleting i from the overlay.
In practice, it ensures that the parent of i becomes the parent of each child of
i. In case of two (or more) concurrent leaving processes i, j which are adjacent
6 Deletions of only voluntary leaves.
7 We assume that a process which has left the overlay (an out process) is not obligated

to respond to messages associated with the maintenance of the overlay connectivity.

48 S. Tucci Piergiovanni and R. Baldoni

j i

JO
IN

k

parent=kj ∈children

j ik

i ∈ children

j ik

ACK_JOIN

parent=j

s=ins=in s=joining

s=in

s=in

j ik

Fig. 1. Change of topology and message pattern for joining

on a same path, the deletion of the pairs 〈i, i.X〉 and 〈j, j.X〉 during the con-
current diffusion of the corresponding updates may lead to a partition. To avoid
partition, the two updates are serialized: before deleting j, the i′s update takes
effect (or vice versa). After that, j updates its neighbor variables and sends a
new update to new neighbors. In the presented protocol the deletion order is
given by the distance from the root. The process closest to the root leaves first.

In particular, the pseudo-code includes a sequence of asynchronous basic steps,
where a basic step is the sending and the receiving of a “LEAVE” and its
“ACK LEAVE” message, respectively (lines 12-15). The [leaving/out] transi-
tion completes when a basic step succeeds (line 15), s = out. More in details,
during each step, a “LEAVE” message containing the children of i is sent to
update the neighbor variables of the current i’s parent (line 12).

In the simple case where the i’s parent k is in when the “LEAVE”(i.children)
message is received (line 21), k updates its children variable, it sends a “NEW PA-
RENT”(k) message to all new children and it sends an “ACK LEAVE” message
to i (line 23). In Fig. 2 the message pattern and the consequent changing of
connectivity relations is described.

After line 23 (executed at time t), we have: (i)∀j ∈ i.children, j ∈ k.children,
then k →t j and (ii) k �→t i by eliminating i from k.children. When at time t′ the
“ACK LEAVE” is received by i (line 13), i sets its neighbor variables to nil, then
only the relation k →t′ j holds. When at time t′′ “NEW PARENT”(k) is received
by each j (lines 24-25), then the following relations hold: k →t′′ j ∧ j →t′′ k.

In a more difficult case, the i’s parent k is leaving when the “LEAVE” message
is received. In that case an order on the departures of i and its parent k is needed,
to break the tie. The rule is the following: if i and its parent k have concurrent
leaves, k leaves the system before j. In this case, while a step is running for i,
a basic step succeeds for k. Then a new (strong) connectivity relation involves i
and the k’s parent j, i.e., i →t′′ j ∧ j →t′′ i. A this point i will have to start a
new step since the variable parent change has been set to true (line 19).

Connectivity in Eventually Quiescent Dynamic Distributed Systems 49

j i

LEAVE(i)

k

parent=k
j ∈children

j ik
i ∈ children

j ik

ACK_LEAVE

parent=j

s=leaving

s=in
s=in

nil ik

i ∈children-{j}
s=in

children=NIL

s=out
parent=nil NEW_PARENT

parent=k
nil ik

Fig. 2. Change of topology and message pattern for leaving

In the worst case scenario all ancestors of i are leaving processes. In this case
the tree root is also involved in a leave, and thus a new root has to be found.
Mechanisms to elect a new root are out of the scope of the paper. Thus, we
consider only the case where the root is a stable process (see 4.2 for a discussion
about protocol assumptions) avoiding to consider election mechanisms. In this
case the number of steps, before i ends successfully a basic step (at line 13), is
bounded by its depth in the tree.

The dynamic restoring mechanism. Initially, the transition [joining/in] brings
the process i to select one parent, namely j, which includes i as one of its chil-
dren. When i belongs to the overlay (line 8), thanks to lines 27-28, the previous
selected parent j is monitored. If the failure detector reports the parent j as
faulty, then the variable degree turns to 0 and the process i switches in a restor-
ing state (lines 29-30). Subsequently, i is in charge of restoring the overlay by
connecting its sub-tree to a new live parent. To avoid cycles, each process uses
the variable rank that gives an indication of the position of the vertex in the
overlay. The value of rank, defined during the [joining/in] transition, is never
modified. The root r has r.rank = 0. If a process i joins through a process j,
i.rank is set to j.rank+1. When a process i turns into a restoring state, it avoids
to select as parent any parent k with k.rank ≥ i.rank.

We depict in Fig. 4 a possible overlay evolution and the use of ranks. After
a growing phase in which only joins occur (Fig.4(a)), a leaving phase in which
only leaves occur is depicted (Fig. 4(b)). Then a failure and the corresponding
restoring is described in Fig. 4(c) and Fig. 4(d).

4.2 Protocol Assumptions and Correctness

Due to lack of space, formal proofs of the protocol correctness are included in
[12] where we prove that the protocol is able to maintain strong connectivity
in quiescent periods of the overlay. When the overlay is affected by failures the

50 S. Tucci Piergiovanni and R. Baldoni

Tree()i

1 var : parent change := � Boolean;
2 degree := null {0, 1, null};
3 rank := ∞ {null} ∪ Integer;

4 when (s = joining ∨ s = restoring) do
5 a := contact(); send [“JOIN”, rank] to a;
6 wait until (degree = 1 ∨ a ∈ FDi ∨ receive [“RETRY”] from a)
7 when (receive [“ACK JOIN”, r] from a) do
8 parent := a; degree := 1;
9 if (rank = ∞)

10 then rank = r + 1;

11 when ((s = leaving) and (parent change)) do
12 send [“LEAVE”(children)] to parent;
13 parent change := ⊥;
14 when (receive [“ACK LEAVE”] from a = parent) do
15 parent := nil; ∀k ∈ children := nil; s := out;

16 when ((receive [“JOIN,r”] from j)) do
17 if ((s = in) ∧ (rank < r))
18 then children := children ∪ {j};
19 send [“ACK JOIN”,rank] to j
20 else send [“RETRY”] to j
21 when ((receive [“LEAVE”(j.children)] from j ∈ children) ∧ (s = in)) do
22 children := children

⋃
j.children − {j};

23 send [“NEW PARENT”(i)] to each j.children; send [“ACK LEAVE”] to j;
24 when (receive [“NEW PARENT”(j)] from a) do
25 parent := j;
26 parent change := �; degree := degree + 1;
27 while parent �= nil do
28 degree := |parent| − |parent ∩ FDi|;
29 when (degree = 0) do
30 s := restoring;
31 when (degree = 1) do
32 s := in;

Fig. 3. The Tree-based Protocol at i

protocol does not avoid partitioning but is able to eventually restore the overlay.
We discuss here the assumptions underlying the correctness of our protocol,
giving an intuition of their necessity.

By the protocol, anytime i switches in a restoring state, if i never completes
lines 4 − 8, then ES will be violated. This is precisely why we assume the
following:

Assumption 1. contact() eventually returns a stable vertex with s = in and
rank = 0.

This assumption implies that the overlay has to be initialized by a stable root in
absence of an election protocol. In fact, if a root with rank 0 fails, its children go
to a restoring phase. As already said, in order to complete the restoring phase,
they have to connect to a process with rank 0 and already part of the overlay
(s=in). By the protocol this process could be only the root. This implies that
the root cannot be transient. Practically, Assumption 1, states the contact()

Connectivity in Eventually Quiescent Dynamic Distributed Systems 51

0

1 1 1

2222222

33333

4 4 4 4 4 4

5

6

(a) overlay after a joining phase

0

1 1 1

222222

3

3

344 4 6 4

(b) overlay after a leaving phase

0

1 1 1

222222

3

3

344 4 6 4

(c) overlay affected by a crash

0

1 1

2222 22

3 3344

4 6 4

(d) overlay after a restoring phase

Fig. 4. An example of overlay evolution

function should eventually return, to a restoring process i, a process which does
not belong to the sub-tree of i and which remains in the overlay enough time to
be selected and used as entry point.

The protocol uses a perfect failure detection mechanism[5] satisfying the fol-
lowing properties:

Assumption 2 (completeness). There exists a time t after which a faulty
vertex is permanently suspected by every correct process.

Assumption 3 (accuracy). No process is suspected before it crashes.

It is worth to note that completeness is necessary as it ensures that a broken
overlay will be eventually restored by first detecting failures. On the other hand
accuracy is not necessary but simplifies the problem. The effects of a non perfect
failure detection are extensively studied in [11].

52 S. Tucci Piergiovanni and R. Baldoni

5 Experimental Evaluation on the Convergence to a
k − ary Tree

In this section we evaluate the tree topologies our protocol is able to output un-
der different level of dynamicity during the perturbed period. Then we propose
an extended protocol version which outputs a k-ary balanced tree in quiescent
periods of the overlay. A k-ary balanced tree is a tree with all internal nodes
with at most k children and where no leaf is much farther away from the root
than any other leaf 8. In the case of an overlay with N nodes with k children
per-nodes, the height of the tree h = �logk N(k − 1) + 1�. Interestingly, this
study shows that, as in the case of connectivity, topological properties are even-
tually restored when the overlay does not change population for a time long
enough.

Simulation is conducted by using Ns-2 simulator [1].

The star effect. The level of connectivity assured by the active handling of leaves
and the dynamic recovery mechanism is at the cost of a loss of tree balancing
during periods characterized by high dynamics. In particular, with a highly tran-
sient population of nodes, the topology may converge to some tree configurations
showing, for instance, a very tailed distribution of node-degrees resulting in a few
overloaded nodes. This is due to a brusque reduction of the height of the tree
during periods characterized by a massively departure of internal nodes since
any departing node hangs up its children to nodes at lower level in the tree.
The extreme case in which all internal nodes simultaneously leave brings to a
star-like overlay.

The star effect is experimentally shown in the following way: each simulation
starts with a topology in an ideal state. In particular, at initial time tsim

0 , T (tsim
0)

is a k-ary balanced tree with k = 7 and 1000 nodes. The simulation time is
divided in time intervals called rounds. We fixed the round duration to 20sec.
Let μ be the churn rate, at each round of the protocol, μ nodes join and μ nodes
leave. Then, at the end of each round the number of vertices is still 1000. The
state of the overlay is checked every second. We report what is the velocity (in
term of seconds) of reaching a star-like topology varying the churn rate 9. To
point out the relation between the churn rate and the time taken to reach a
star-like topology, the y-axis reports round numbers instead of seconds. In this
simulation we have considered that the overlay reaches a star topology when at
least one node has a number of children greater than 10010. The plot in Fig. 5(a)
shows that an increasing churn rate reduces the time the overlay converges to a
star-like topology. Note that we chose very high churn rates to show the extreme
behavior of the protocol.

8 There may exist a difference between two leaves of at most 1 level.
9 Each point in the plots has been computed as an average of 40 simulation distinct

runs. For each point all the results of these runs were within 4% each other, thus
variance is not reported in the plots.

10 One order of magnitude greater than log7 1000.

Connectivity in Eventually Quiescent Dynamic Distributed Systems 53

(a) convergence to a star-like topology (b) re-balancing effect under churn
rate μ = 200

(c) re-balancing effect under different
churn rates

Fig. 5. Protocol effects on topology without and with the re-balancing mechanism

The re-balancing mechanism. To contend with the star effect, we propose a
simple mechanism to re-balance the tree and we evaluate its effectiveness under
dynamics.

Assuming that the topology in the ideal state is a k-ary balanced tree, the
mechanism is the following: any node i periodically selects a number of exceeding
children equal to |i.children| − k. These children may be chosen at random
or by following more sophisticated rules, e.g., choosing the youngest children).
We consider a random choice. The node i sends a message to these exceeding
children, inviting them to find another parent between their (not exceeding)
siblings. Then each exceeding child j that is a leaf immediately tries to connect to
one of its siblings k. If the connection successes, (i) j results connected to k with
a rank j.rank = k.rank+1 (ii) i deletes j from its children. In a pure star overlay
this mechanism is very effective, because all the children of the overloaded node
are leaves. Unfortunately, if an overloaded node has any children with just one

54 S. Tucci Piergiovanni and R. Baldoni

children the mechanism does not work anymore. For this reason, each exceeding
child i dismisses all its sub-tree to become a leaf, and the mechanism provides
to reconnect the sub-tree as an unique flat level around a not exceeding sibling
of i.

The effects of the re-balancing mechanism are evaluated under a churn rate
equal to μ = 200 (see fig. 5(b)) and under different churn rates (see fig. 5(c)). We
consider also a fixed percentage of failures equal to 1 for all experiments. The
churn perturbs the overlay for 10 rounds (200 seconds) and after churn subsides.
We have evaluated the degree of the most overloaded node in the overlay at
every second and the height of tree after the it subsides. The plot in fig. 5(b)
points out a periodic counter-effect due to the re-balancing mechanism striving
the star convergence during the perturbation period. In the first round the most
overloaded node reaches a degree equal to 25 but at the end of the round the
re-balancing mechanism shrinks the degree to 8. The effect of a continuous churn
leads to increase the minimum degree and maximum degree per round, e.g., in
round 8, the maximum degree of the most overloaded is 36 and at the end of
the round the degree goes to 15. At the end of perturbation the re-balancing
mechanism brings the overlay to converge again to a well-balanced tree with a
degree of the most overloaded node equal to 7 and a height of the tree equal to
8 (the height does not appear in the plots).

The impact of different churn rates in Fig. 5(c) reveals that the higher the
churn rate is, the faster the degradation towards a star becomes, and less effective
is the re-balancing mechanism during the perturbation interval. In any case in
absence of churn the overlay converges to a balanced tree (the height is always
equal to 8). The time for converging again to a balanced tree does not depend
on the churn suffered previously.

6 Related Work

To the best of our knowledge, [8] is the only work which presents a precise
definition of the connectivity problem for ring-shaped overlays in a finite arrival
model. More specifically, an invariant for a ring overlay protocol was defined
stipulating that the ring topology is eventually restored after overlay changes
subside. A protocol that satisfies the invariant in the absence of failures was
then presented. A ring-based redundant structure was also proposed, however,
the model they assume considers a known number of failures, which can be
arbitrary small with respect the number of entities part of the system. Our
problem specification is more general in the sense that we consider any topology.
In addition, our protocol tolerates any number of failures.

The more general problem of defining a computing model for dynamic systems
is an active research area, e.g., [3,10,4]. In [10] system dynamicity is modelled
through a finite arrival model with an arbitrary large number of failures. How-
ever, there is no concept of dynamic communication graph: the communication

Connectivity in Eventually Quiescent Dynamic Distributed Systems 55

graph is “hidden” by two communication primitives, namely a query-response
and a broadcast. The behaviour of these two primitives implies the assumption
of connectivity among process entities.

In [4] the communication graph is part of the very definition of a dynamic
system. Moreover, differently from what assumed in our paper, [4] adopts an
infinite arrival model to abstract the continual arrival and departure of nodes
to/from the graph. This implies that no quiescence is assumed since arrivals and
departures never subside. As regards the dynamic communication graph, in [4]
different levels of graph dynamicity are proposed, by ruling the way the graph
diameter and the number of vertices may vary along the time. Nevertheless, the
graph is here assumed connected at any time, then it can vary growing and
shrinking arbitrarily, but it never disconnects by assumption.

7 Concluding Remarks

The paper has provided a formal definition of the connectivity problem in even-
tually quiescent dynamic systems. In particular it has been presented the prop-
erty of eventual strong connectivity which states that from an arbitrary point
of time any pair of nodes must be able to communicate–the overlay is strongly
connected. We believe that this form of connectivity has the double advantage
to be (i) loose enough to encompass a wide range of protocols and (ii) strong
enough to be useful in practice.

The paper has presented a protocol that maintains a tree as overlay topology.
This is actually the first provably correct protocol guaranteeing eventual con-
nectivity of the communication graph in a model including an arbitrary large
number of simultaneous arrival and departures.

Finally, the paper presented a simple extension of the protocol with the aim
of converging to a k-ary tree during system quiescence. A simulation study con-
firmed this result.

References

1. Ns-2 simulator: http://www.isi.edu/nsnam/ns
2. Aguilera, M.K.: A Pleasant Stroll through the Land of Infinitely Many Processes.

ACM SIGACT News, Distributed Computing Column 35(2), 36–59 (2004)
3. Anceaume, E., Defago, X., Gradinaru, M., Roy, M.: Towards a Theory of Self-

organization. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS
2005. LNCS, vol. 3974. Springer, Heidelberg (2006)

4. Baldoni, R., Bertier, M., Raynal, M., Piergiovanni, S.T.: Towards a Definition of
Dynamic Distributed Systems. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol.
4671, Springer, Heidelberg (2007)

5. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

6. Karger, D., Liben-Nowell, D., Balakrishnan, H.: Analysis of the Evolution of Peer-
to-Peer Systems. In: Proceedings of the 21st ACM Annual Symposium on Princi-
ples of Distributed Computing (PODC02), pp. 233–242 (2002)

http://www.isi.edu/nsnam/ns

56 S. Tucci Piergiovanni and R. Baldoni

7. Gafni, E., Merritt, M., Taubenfeld, G.: The Concurrency Hierarchy, and Algorithms
for Unbounded Concurrency. In: Proceedings of the 20th annual ACM symposium
on Principles of Distributed Computing (PODC01), pp. 161–169 (2001)

8. Li, X., Misra, J., Plaxton, G.: Active and Concurrent Topology Maintenance. In:
Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 320–334. Springer, Heidelberg
(2004)

9. Merritt, M., Taubenfeld, G.: Computing with Infinitely Many Processes. In: Pro-
ceedings of the 14th International Conference on Distributed Computing, pp. 164–
178 (2000)

10. Mostefaoui, A., Raynal, M., Travers, C., Patterson, S., Agrawal, D., El Abbadi, A.:
From Static Distributed Systems to Dynamic Systems. In: Proceedings of the 24th
IEEE Symposium on Reliable Distributed Systems (SRDS05). IEEE Computer
Society Press, Los Alamitos (2005)

11. Tucci-Piergiovanni, S.: Concurrent Connectivity Maintenance with Infinitely Many
Processes. Ph.D. Thesis, http://www.dis.uniroma1.it/∼midlab/publications

12. Tucci-Piergiovanni, S., Baldoni, R.: Connectivity in Eventually Quiescent Dynamic
Systems, Technical Report,
http://www.dis.uniroma1.it/∼midlab/publications

http://www.dis.uniroma1.it/~midlab/publications
http://www.dis.uniroma1.it/~midlab/publications

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 57–74, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Implementing Fault Tolerance Using Aspect Oriented
Programming

Ruben Alexandersson and Peter Öhman

Dept. of Computer Science & Engineering, Chalmers University of Technology,
SE-41296, Gothenburg, Sweden

{ruben,peter.ohman}@chalmers.se

Abstract. Aspect oriented programming (AOP) is a promising technique for
implementing fault tolerance. Still there exist few actual implementations. One
reason is that most present day AOP languages do not offer the level of control
needed. This paper addresses the problem by defining a representative set of
fault tolerance mechanisms. The set can be used for evaluating the feasibility of
languages and for finding needs for improvements. It has been used to evaluate
the AspectC++ language, and a number of limitations have been revealed. As-
pectC++ was then extended in order to address this. It is also demonstrated how
reusable fault tolerance mechanisms can be built using aspect oriented C++,
and the advantages compared to using standard C++ are discussed.

Keywords: Aspect Oriented Programming, Fault Tolerance.

1 Introduction

Software implemented fault tolerance is a well known technique for dealing with fail-
ures caused by both hardware and software faults. Compared to hardware imple-
mented fault tolerance it has the advantage of being more flexible and cost efficient.
Today a number of techniques are available when implementing fault tolerance (e.g.
libraries, program transformation or meta programming). A new approach to software
implementation is aspect oriented programming (AOP) [1]. It has seen a rapid devel-
opment in the past few years and is presently reaching a state at which it can be con-
sidered a useful and functioning technique. AOP allows the programmer to implement
fault tolerance functionality separately from the functional code and to combine these
implementations to form the final system. As discussed below, and demonstrated by
the implementations presented in this paper, this gives a number of benefits when im-
plementing fault tolerant software.

Still, very few actual implementations that use AOP to achieve fault tolerance ex-
ist. One reason is, as demonstrated in this paper, that present day AOP languages do
not provide the level of control needed for fault tolerance frameworks. Although a
great deal of effort is currently being made in the development of different general
purpose AOP languages, the needs of fault tolerance implementations have not been
addressed in these languages. Hence there is a need for stating the language level re-
quirements given by fault tolerance implementations. To elicit these requirements a

58 R. Alexandersson and P. Öhman

representative set of fault tolerance mechanisms has been defined. The mechanisms
have then been used to evaluate the AspectC++ language [2]. This revealed the limita-
tions of the language and the necessary requirements for improvements. To certify
that the requirements were sufficient and could be met, AspectC++ was extended and
again evaluated against the set of mechanisms.

2 Aspect Oriented Programming

Any normal industrial size software system is a combined implementation of multiple
functionalities such as diagnostics, fault tolerance, data persistence, logging, authenti-
cation, security, multithread safety and so on. These are known as concerns.

The system design and modularization are chiefly conducted to reflect the primary
function of the application. The effect of this is that all other concerns can not be
modularized in a good way and their implementation is then scattered throughout the
program modules. These secondary concerns are therefore called crosscutting
concerns since they crosscut all (or many) of the program modules. As an example,
control flow checking (see section 3.5) affects every function of every module of the
application program and is therefore scattered throughout the implementation. Al-
though the mechanism can syntactically be defined with just a few lines of code, ob-
ject oriented techniques require that a very large amount of code be added throughout
the entire software. Code scattering is one effect of this lack of modularization. Code
tangling is another effect, meaning that each module includes code related to many
concerns. Hence the code related to different concerns becomes tangled within a
module or function. A number of problems with the software and its development
arise as a result of code tangling and scattering. One is the problem of less code reuse.
Code tangling makes it difficult to reuse the primary function of the module in an-
other set-up since the code is tangled with secondary functionalities. Reusing secon-
dary functionalities, such as fault tolerance, is even harder since the code is both scat-
tered around the application and tangled together with other concerns. AOP is an
approach that can be used to overcome this and other problems by separating the im-
plementation of a concern from the rest of the program. AOP allows the programmer
to implement any (or all) concerns in a loosely coupled fashion and to combine these
implementations with the rest of the program to form the final system.

The use of AOP is supported by AOP languages. An AOP language compiler is
normally implemented as a source-to-source compiler that weaves the different con-
cern specific sources together. One view of an AOP language is therefore that it is a
highly programmable source-to-source compiler. This is why the technique is so well
suited for implementing systematic fault tolerance mechanisms that can be introduced
automatically. However, in contrast to a pure code transformation tool, AOP allows
the utilization of application knowledge to cover only the parts of the implementation
that are critical and can thereby reduce the overhead. Another view of an AOP lan-
guage is that it is a well integrated extension to a programming language that lets the
programmer produce implementation specific code. Hence both systematic and im-
plementation specific mechanisms can be implemented in a uniform way, allowing
them to smoothly cooperate in a single fault tolerance framework. This gives the de-
veloper the freedom to choose the most efficient mechanism to achieve fault tolerance

 Implementing Fault Tolerance Using Aspect Oriented Programming 59

for each part of the implementation. However, this is only possible if most or at least
a wide range of fault tolerance mechanisms can be implemented efficiently using the
chosen AOP language. This is unfortunately not the case in most present day AOP
languages.

3 Defining the Representative Set

When developing fault tolerance frameworks, or researching new mechanisms for
fault tolerance, target programs are used to measure and assess the effectiveness of
the mechanisms or frameworks. To be able to compare the results for different
mechanisms and frameworks originating from different studies, the same target pro-
grams and fault loads should be used. Further, in order to be able to draw general
conclusions, a set of diverse and representative programs and fault loads is needed.
When developing implementation techniques, there is a similar need for a set of fault
tolerance mechanisms that can be used for evaluating the feasibility of different tech-
niques for implementing fault tolerance. No such set exists today that can be used to
evaluate the feasibility of different AOP languages or of AOP in general.

To be able to conduct this study, a small set of fault tolerance mechanisms was
thus defined. If all mechanisms included can be implemented in a satisfactory way us-
ing a certain language, that language can be considered generally feasible for fault
tolerance purposes. The mechanisms are intentionally chosen so that they place as
high and diverse demands as possible. Hence one can not draw the conclusion that a
language is unfeasible in all situations because it fails on a single or a couple of
mechanisms; rather, this points out the limitations of the language and sets the
boundaries for its applicability. This information can serve as an input to language de-
signers about the needs of fault tolerance implementations and be useful when con-
sidering different implementation techniques or languages for a specific fault toler-
ance implementation. It should be noted that the mechanisms were chosen for the
purpose of evaluating implementation techniques and languages from a programming
or software engineering point of view. This gives a set that is probably different from
one that would be chosen for a representative performance benchmark. Hence this set
should not be used for performance evaluations without proper adaptation.

Software implemented fault tolerance is built on run time checks that can detect er-
rors originating from activated faults. This is done by monitoring different aspects of
the program. The first criterion for language feasibility is therefore that monitoring all
parts of both the functional and data domain of the program must be supported. Hence
this should be covered by the set.

Both detection and recovery mechanisms make use of redundancy as the underly-
ing concept. Detection mechanisms compare the program state with redundant infor-
mation in order to detect differences, and recovery mechanisms use redundancy to
create a correct or acceptable program state. Redundancy can either be in the form of
replication or diversity. As with checks, it can be applied to either the functional or
the data domain of the program yielding (on the implementation level) four different
forms of redundancy: function duplication, function diversity, data duplication and
data diversity. Since these different forms of redundancy have different requirements
on the implementation language, the set must cover all of them.

60 R. Alexandersson and P. Öhman

As high and diverse demands on the implementation language as possible were the
main criteria for selecting the set of representative mechanisms, the end result was a
set of mechanisms that includes both error detection and error recovery mechanisms.
They range from systematic to implementation specific and include mechanisms de-
signed for both hardware and software fault tolerance. Although this set was defined
with the purpose of assessing the feasibility of AOP languages, it is still applicable for
assessing other languages or techniques as well. This is true since the mechanisms
were not chosen directly on the basis of language features used but on underlying
properties such as accessibility of data and functional code. The chosen set is pre-
sented in Table 1 and explained in detail in the sections below.

Table 1. Set of representative mechanisms

Name Check Redundancy
Incremental recovery cache - Data replication
Time redundant execution Function output Function replication
Runtime checks Data Data diversity
Recovery blocks Function input / output Function diversity
Control flow checking Function flow -

3.1 Incremental Recovery Cache

A large number of fault tolerance implementations rely on the concept of backward
error recovery to return to a previously saved state. A checkpointing mechanism
builds on the principle of data replication and provides support for backward error re-
covery by allowing the program to return to the state it held when a checkpoint was
established. There are basically two different approaches when implementing support
for checkpointing. Either a backup of the complete state is made and stored at the
checkpoint or the mechanism starts to monitor state changes and stores only the part
of the state that is changed. The latter is called incremental checkpointing. There are
also two distinct types of incremental mechanisms. The first makes a complete
backup at the first checkpoint and then starts monitoring changes to the program state.
When a new checkpoint is reached, only the part of the state that has been changed
since the last one is updated. The second type is called an incremental recovery cache
[3]. The recovery cache does not make a total snapshot of the state when it sets up a
checkpoint but starts monitoring changes to state variables. When a variable is
changed for the first time after the checkpoint, a copy of the old value is immediately
stored in the cache. Considering these three basic types of mechanisms, they place a
rising demand on access to and control over the program state. All three require ac-
cess to all state variables in order to be able to store or restore them. The two that are
incremental in addition to this also need to detect changes to these variables. The first
type of incremental mechanism must only detect a change afterwards, while the re-
covery cache needs to detect the change prior to its being made in order to be able to
fetch the old value before it is overwritten. This means that, if a language is powerful
enough so that a recovery cache can be implemented in a satisfactory way, the other
types of checkpointing mechanisms can be built as well. Compared to some other
mechanisms for data replication, the recovery cache lacks the need to detect read

 Implementing Fault Tolerance Using Aspect Oriented Programming 61

accesses on data. However, this is covered by the set through the runtime check
mechanism described below. Hence the recovery cache was chosen to represent data
replication mechanisms in the set.

3.2 Time Redundant Execution

A technique for detecting and masking transient faults through function replication is
time redundant execution [4]. An error originating from a transient fault can be de-
tected by executing a function two times and comparing the results. If the function is
executed a third time, the fault can be masked by voting between the three runs. Since
the error masking version follows the same structure as the non masking, with the ex-
ception that it executes the function a third time and calls a voting algorithm instead
of signaling an error, it does not place any additional demands on the language. Hence
the mechanism chosen is the basic version that detects an error and signals that a fault
has occurred. A common extension to this mechanism is to duplicate the actual pro-
gram code in memory having each execution run on its own copy. Static duplication
of code, although very useful in the fault tolerance domain, is out of the scope of any
general purpose programming language. Hence it was not included in this study.
However, should the set be applied to implementation techniques where this can be
supported, e.g. code transformation tools, it should be included.

3.3 Recovery Blocks

Recovery blocks [5] are a structured way of adding software fault tolerance to a
program based on the concept of function diversity. This technique consists of an
acceptance test that verifies the output of an algorithm and one or more alternative
implementations that are executed should the test fail. The recovery block implemen-
tation included in the set has one alternative algorithm, but implementations with
more alternatives follow the same basic structure.

3.4 Runtime Checks

Runtime checks (also known as executable assertions) are used to monitor the proper-
ties of data stored in variables or passed to and from functions. Monitoring function
input and output is covered by the set through the time redundant execution and re-
covery block mechanisms. Hence only monitoring of variable data needs to be further
included. The check included in the set should monitor a counter variable. When the
variable is written to it asserts that it is only reset or raised by one. When read from it
asserts that the variable is in the range of zero to ten.

3.5 Control Flow Checking

Function checks either assert the correctness of function code or that the correct code
is executed. The first case is done at runtime by monitoring the results the code pro-
duces, i.e. by data checks. Hence this is already covered by the chosen mechanisms.
To cover the second case, control flow checking [6] was included. This mechanism
is used to detect an erroneous program flow caused by illegal branches. Such a
branch could e.g. be caused by transient faults that affect the program counter. The

62 R. Alexandersson and P. Öhman

mechanism is built on the principle that, if a program enters a block of code, it must
be the same block that it exits the next time it exits a code block. An identifier that is
unique to each block is placed at the beginning and at the end of the block. When a
block is entered, the identifier is pushed on a stack and, when the block is exited, it is
pulled and compared with the identifier placed at the end. If they do not match, a con-
trol flow error has been detected. A code block can be defined with different granular-
ity. The highest granularity used in practice in software is achieved by defining a
block as a branch free sequence of the code. Another common approach is to use
function bodies as blocks.

4 AOP Language Evaluation

In a preparatory study [7] we evaluated the feasibility of present day AOP languages
for building fault tolerance. The only language that showed satisfactory results was
AspectJ, which is an AOP extension to Java. However, since our research targets
embedded safety critical systems, the usability of Java is very limited. Therefore, As-
pectC++ [2], which is an AOP extension to C++, is the most promising candidate as
an AOP platform for implementing fault tolerance in this domain. Hence, this was the
language chosen for further evaluation and extension.

4.1 AOP Language Concepts

An aspect oriented implementation of a crosscutting concern consists of two parts, the
actual implementation of the functionality associated with the concern and the infor-
mation on how that code should be integrated into the rest of the program. Any tradi-
tional language, such as C or C++, is well suited for the first part. However, the tradi-
tional languages lack primitives for specifying how the concern specific code should
be composed, or weaved, together to form the final system. An AOP language there-
fore defines a way to specify rules for composing different implementation pieces to-
gether. The AOP language is then built as an extension to a traditional language to
give that language aspect oriented capabilities in the same way that C++ was built as
an extension to C to provide object oriented capabilities to the C language.

The main characteristics of an AOP language are what base language it extends
and what joinpoints it supports. A joinpoint is an accessible point in the application
execution where concern specific code can be inserted when conducting system weav-
ing. An AOP language lets the programmer declare a pointcut that accesses a set of
joinpoints. The pointcut can then be linked to a concern specific code segment called
advice.

4.2 Evaluating AspectC++

When trying to implement the mechanisms using AspectC++ it was found that only
two of the five could be implemented while still retaining the separation of concerns
(see Table 2). An analysis showed that the reason was the same for the recovery cache
and the runtime check, namely the lack of joinpoints for targeting the data domain. In
the case of the control flow check, AspectC++ could not generate a unique function

 Implementing Fault Tolerance Using Aspect Oriented Programming 63

Table 2. Evaluation results

 AspectC++ v.1.0pre3 Extended AspectC++

Recovery cache

Time redundant execution
Recovery blocks

Runtime checks

Control flow checking

identifier that can be used by the check. In order to know whether these problems
could be solved, we decided to extend the official release of AspectC++ with the
needed functionality by modifying the publicly available source code. After adding
the two extensions described in section 4.3, all the mechanisms could be implemented
in a satisfactory way.

In addition, a few more language improvements that could further improve the im-
plementations in terms of runtime performance, applicability and reusability were re-
vealed while implementing the set of mechanisms. The ability to pointcut implicitly
declared operators would improve the performance of the recovery cache implementa-
tion. The ability to use multiple proceed() statements without restriction would make
the time redundancy mechanism applicable to all target functions and the ability to
pass joinpoint information as function argument would enable reuse of the recovery
block structure. These improvements, and the ability to pointcut the data domain im-
plemented in the extension, would be generally useful for a larger number of fault tol-
erance mechanisms, e.g. most data redundancy mechanisms and N-version program-
ming. This proves the usability of the chosen set in finding limitations shared by a
larger number of fault tolerance mechanisms.

4.3 AspectC++ Extensions

Two extensions were added to the official release of AspectC++ addressing the limi-
tations found. The first deals with the need for detecting and controlling data accesses.
In other AOP languages, joinpoints for targeting the data domain are known as get
and set joinpoints. These are used for monitoring read and write accesses on variables.
One reason for why AspectC++ does not yet support these joinpoints is that C++ al-
lows overloading of assignment operators. This makes it difficult to define the set
joinpoint. The possibility to overload the operator can be used instead of a set join-
point in order to monitor variable change for non primitive data types (i.e. Class
types). Class types can hence be monitored by automatic introduction of assignment
operators or by execution joinpoints on already declared operators. This reduces the
need for set joinpoints to primitive data types and pointers that lack operator over-
loading capabilities. Hence AspectC++ was extended with set joinpoints only
for these types. By combing these techniques a fault tolerance implementation can

64 R. Alexandersson and P. Öhman

monitor variables of all data types. A second problem in set and get joinpoints is
commonly known as the alias problem. In a language that supports pointers, a data
field might be accessible through several pointers or variables. This problem is gener-
ally difficult to solve since the use of pointer arithmetics makes it impossible to know
at compile time which variables might be accessed by address. For now, the alias
problem is not considered in the implementation of the get and set joinpoints, which
can therefore be considered to monitor a specific access path to a data field rather than
the field itself. Implications of this approach for the mechanisms that use the join-
points are discussed below.

The other limitation found was that AspectC++ could not generate a unique identi-
fier for each function that can be used by the control flow check. However, the lan-
guage has a very similar feature that gives a unique identifier for each joinpoint called
JoinPoint::JPID. Hence this structure was extended with an identifier, FID (Function
ID), which works in a similar way and identifies the function containing the joinpoint.

5 AspectC++ Implementations

This section describes the implementations of the mechanisms. Advantages and limi-
tations of the AspectC++ implementations and AOP in general are discussed. The im-
plemented and suggested extensions to the language are also put into context and ex-
plained.

5.1 Incremental Recovery Cache

The complete implementation of the recovery cache is far too tedious to fit in the size
restriction of this paper. Therefore only the general principles together with advan-
tages and limitations are discussed. A more extensive description of the implementa-
tion can be found in [8].

The functionality of the actual cache is provided by the class shown in Figure 1.
This class is not specific to AOP and hence the internal implementation is not needed
to understand the AOP approach. The core functionality of the class is provided by
three functions, establish, restore and discard, which are used to set up, restore to and
discard checkpoints. The cache accepts an object for storing through the store func-
tion. By encapsulating any such object in a generic object type by instantiating a tem-
plate class, the cache can remain oblivious to the type of the stored object and hence
support all types of objects. The cache must also keep track of when objects are cre-
ated so that only objects created before the checkpoint are cached. This is assured by
calling the functions objectCreated and objectDeleted upon object construction and
destruction. The cache also prevents memory allocated prior to the checkpoint from
being freed before the checkpoint is discarded and assures that memory allocated after
the checkpoint is freed when the checkpoint is restored. This is handled by calling
memoryAllocated when an object is created on the heap and by allowing the cache to
control the release of memory by calling free.

 Implementing Fault Tolerance Using Aspect Oriented Programming 65

class RecoveryCache {

public:

 static void establish();

 static void discard() ;

 static void restore();

 static void store(Recoverable* r);

 static void objectCreated(void* p);

 static void objectDeleted(void* p);

 static void memoryAllocated(void* p);

 static bool free(void* p);

};

Fig. 1. The RecoveryCache class

The first three functions are publicly available for any part of the fault tolerance
framework that needs the functionality of the cache and can be used when desired.
The other functions must be called whenever an object that may potentially be cached
is created, deleted or modified. Much of this can be achieved by having all affected
classes inherit from a common base class. In this way, the base class constructor and
destructor can signal the creation and deletion of objects to the cache. New and delete
operators can also be placed in the base class in order to refer memory allocation and
deallocation to the cache. Furthermore, some object modifications can be detected by
having the base class define its own assignment operator. This assignment operator is
only called if there is no operator already defined in the inheriting class. This is a
limitation in the base class approach, which in a standard C++ implementation would
require that an explicit call to the base class operator is manually added to all assign-
ment operators. In addition, if standard C++ is used, the base class must be manually
added to the inheritance tree of all affected classes. When AspectC++ is used, both
these things can automatically be assured by the aspect. Still, there is the case when
primitive or pointer fields are modified. Standard C++ has no means to detect this.
This most significantly limits the usefulness of standard C++ implementations of the
recovery cache. This limitation is also shared with the current release of AspectC++.
As described in section 4.3, AspectC++ was therefore extended with a set joinpoint
that targets changes to these fields.

66 R. Alexandersson and P. Öhman

aspect RecoveryCacheAspect {

public:

 pointcut virtual cachedClasses() = 0;

 pointcut filteredClasses() = cachedClasses()
 && !"RecoveryCache" && !"Recoverable"
 && !derived("RecoveryCacheAspect")
 && !"CachedObject";

 advice filteredClasses(): baseclass(Recoverable);

 …

 pointcut assignmentOp() =
 execution("% %::operator=(...)"
 && within(filteredClasses());

 pointcut primitiveChange() = set("%::%")
 && target(filteredClasses());

 pointcut change() = assignmentOp()
 || primitiveChange();

 advice change() : before() {
 RecoveryCache::store((Recoverable*)tjp->that());
 }
};

aspect CompleteCache : public RecoveryCacheAspect {
 pointcut cachedClasses() = "%";
};

Fig. 2. The RecoveryCache aspect

The RecoveryCache aspect shown in Figure 2 is the aspect oriented part of the im-
plementation and what glues the cache implementation and the target program to-
gether. The cachedClasses pointcut defines what objects should be stored in the
cache. This pointcut is declared as true virtual in order to make the implementation
generic. The filteredClasses pointcut assures that all classes that are part of the cache

 Implementing Fault Tolerance Using Aspect Oriented Programming 67

implementation itself are removed from the set of classes that should be stored. The
advice then adds the common base class described above to the classes. The added set
joinpoint is used in the primitiveChange pointcut. The change pointcut is the union of
user defined assignment operators and of changes to primitive and pointer fields. This
pointcut is then used for an advice that updates the cache.

A further language improvement that may lower the runtime cost of the mecha-
nisms would be the ability to pointcut implicitly declared operators. This would
remove the need for having an assignment operator in the base class. Because of mul-
tiple inheritances in C++, the base class operator might be called multiple times when
an object is changed. If it would be possible always to intercept calls to the assign-
ment operator in the top level class, multiple calls to the cache could be avoided.

The cache is applied to a target program by writing a subaspect that defines the
cachedClasses pointcut. In the CompleteCache aspect in Figure 2, it is set to pointcut
all of the target program classes. This will monitor the complete program so that all
changes to the system state are reverted when a restore to the checkpoint is made. Al-
ternatively, knowledge of the target program can be used to minimize overhead by
only caching a wanted subset of objects. The AOP implementation also places almost
no restriction on the target classes and can hence easily be applied to legacy code. The
restriction that is placed is that a primitive member field should not be directly ali-
ased. This is a small restriction, since primitive member fields should always be
accessed through the object. What we have is thus a fully transparent recovery cache
that can be applied to an application without knowledge of that application’s inner
working, and at the same time a recovery cache that can be targeted to only
cache wanted parts of the program state by simply modifying a single line pointcut
definition.

5.2 Time Redundant Execution

The TimeRedundancy aspect in Figure 3 implements a generic time redundancy
mechanism. Time redundancy illustrates well how simple it is to apply an AOP im-
plementation to a target program. It is only a matter of declaring which function(s)
should be executed in a time redundant manner by subclassing the aspect and defining
the timeRedundantFunctions pointcut. This is exemplified by the TRFunctions aspect
in Figure 3 that will execute all functions in the “Critical” class in a time redundant
manner. The timeRedundantCall pointcut makes use of the “!cflow” expression. This
guarantees that a function called by a function (itself or another) that is already exe-
cuted in a time redundant manner will not also execute multiple times within each
execution of the calling function. This is a very good example of the power of the
pointcut syntax. This program wide property can be difficult and error prone to ensure
when using standard C++ but is guaranteed with just a single expression using AOP.
As presented here, the mechanism assumes that the targeted functions are fully deter-
mininistic and does not depend on external actions. However, if the result is depend-
ent on varying external values (e.g. sensor values), the mechanism can be extended to
capture calls to these and provides the function with a consistent value for both runs.
The exact implementation depends on the nature of the interface used for accessing
external values and is thus dependent on the architecture of the target program.

The time redundancy mechanism shown here makes use of the recovery cache to
set up a checkpoint and return to the previous state before each run. Normally, some

68 R. Alexandersson and P. Öhman

other checkpointing mechanism should be used, since the recovery cache is designed
only for software fault tolerance. However, since the recovery cache is included in the
chosen set of mechanisms, it is used here to demonstrate the structure of the time re-
dundancy mechanism.

aspect TimeRedundancy {

 pointcut virtual timeRedundantFunctions() = 0;

 pointcut timeRedundantCall() =
 call (timeRedundantFunctions()) &&
 !cflow(execution (timeRedundantFunctions()));

 advice timeRedundantCall() : around() {
 RecoveryCache::establish();
 tjp->proceed();
 JoinPoint::Result r1 = *tjp->result();
 RecoveryCache::restore();
 tjp->proceed();
 JoinPoint::Result r2 = *tjp->result();
 if(r1 != r2) throw "TransientFaultException";
 RecoveryCache::discard();
 }

};

aspect TRFunctions : public TimeRedundancy {

 pointcut timeRedundantFunctions() =
 "% Critical::%(…)";

};

Fig. 3. Time redundant execution implementation

There is one limitation to the applicability of this mechanism that has to do with the
implementation of the AspectC++ compiler. If the result of the targeted function is a
class instance that is returned by value, there can be unintended effects when calling pro-
ceed() multiple times within an advice. The reason is that the result of the first run is sim-
ply overwritten without executing the class assignment operator. This can be handled by
certifying that the assignment operator does not do anything critical, or by using return by
reference instead. Although it can be handled, this is a limitation in AspectC++ that
should be addressed in order to remove the restrictions on the target program.

 Implementing Fault Tolerance Using Aspect Oriented Programming 69

The main advantage of this implementation is that it is implemented in a generic
way and allows the programmer to simply apply it to a function. This is not possible
in an OO only language, which requires that wrapper functions be written to individ-
ual functions. Thus, the properties described above and the fact that the fault tolerance
code is completely separate from the primary function modules, make AOP a very
compelling approach to implementing this type of mechanism.

5.3 Runtime Checks

Runtime checks do not benefit from one common general AOP implementation as the
structure of the AOP joinpoints and advice in itself give an ideal environment for im-
plementing each check. Checks that are implementation specific can be implemented
directly as a custom built aspect, and ones that are common can be implemented as a
reusable aspect. An appealing property of runtime checks implemented with the use of
aspects is that they can easily be made to continuously monitor for instance a state
variable at all accesses. The source code needed is equally simple as the code needed
for monitoring a single crucial location in a program. Monitoring all accesses gives a
higher runtime overhead but is still an effective way of assuring that only legal state
transitions occur in a critical system. There is one limitation to this, caused by the alias
problem. This means that a runtime check set up to monitor accesses to an object or
field will only detect accesses through the variable it is set to monitor. If an access is
made through an unmonitored aliasing variable, it will not be detected. Aliasing critical
variables is not recommended and, if done, the effects must be well understood and
handled. AspectC++ does not at present free the programmer of this responsibility.

aspect CounterAssertion {

 pointcut writeCounter() =set("int Aclass::_counter");

 pointcut readCounter() =get("int Aclass::_counter");

 advice writeCounter() : before() {
 if (!(0 == *tjp->source() ||
 1 == *tjp->source() - *tjp->dest()))
 throw "CheckFailedException";}

 advice readCounter() : before() {
 if (!(0 <= *tjp->dest() && 10 >= *tjp->dest()))
 throw "CheckFailedException";}

};

Fig. 4. Counter property assertion

70 R. Alexandersson and P. Öhman

This runtime check requires the set and get joinpoints added in the extended ver-
sion of AspectC++. The code in Figure 4 asserts the counter property of a variable, as
well as that it is within the range of zero to ten.

The advantages of using AOP for runtime checks are, apart from the separation of
function and assertion code, that program properties can be continuously monitored in
a simple way and that common checks can be reused.

5.4 Recovery Blocks

The RecoveryBlock aspect in Figure 5 is applied to an algorithm (encapsulated in a
function) by both declaring the pointcut and implementing the acceptance test and an
alternative algorithm. Since it is not possible to pass the tjp data structure as a func-
tion argument, the aspect can not be built generically and the functions implemented
in a subclass. This is a limitation of AspectC++ that should be addressed in the future.

 aspect RecoveryBlock {

 pointcut function() =
 execution ("int aClass::afunction(int)");

 bool acceptanceTest(int arg, int result){
 // implementation of acceptanceTest
 }

 int alternativeImp(int arg){
 // alternative implementation of function.
 }

 advice function() : around() {
 RecoveryCache::establish();
 tjp->proceed();
 if (!acceptanceTest(*tjp->arg<0>(),
 *tjp->result())){
 RecoveryCache::restore();
 *tjp->result() =
 alternativeImp(*tjp- >arg<0>());
 if (!acceptanceTest(*tjp->arg<0>(),
 *tjp->result())){
 RecoveryCache::discard();
 throw "SoftwareFaultException";
 }
 }
 RecoveryCache::discard();
 }

};

Fig. 5. Recovery block implementation

 Implementing Fault Tolerance Using Aspect Oriented Programming 71

aspect ControlFlowChecking{

 pointcut monitoredFunctions() = "% ...::%(...)";

 pointcut ControlFlowExe() =
 execution(monitoredFunctions())
 && !execution("% ...::main(...)")
 && !within("ControlFlowChecking");

 pointcut ControlFlowCall() =
 call(monitoredFunctions())
 && !call("% ...::main(...)")
 && !within("ControlFlowChecking");

 stack<int> s;

 advice ControlFlowCall() : around() {
 s.push((int)JoinPoint::FID);
 try {
 tjp->proceed();
 } catch (...) {
 if ((int)JoinPoint::FID != s.top())
 throw "ControlFlowFaultException";
 s.pop();
 throw;
 }
 if ((int)JoinPoint::FID != s.top())
 throw "ControlFlowFaultException";
 s.pop();
 }

 advice ControlFlowExe() : before() {
 if ((int)JoinPoint::FID != s.top())
 throw "ControlFlowFaultException";
 }

 advice ControlFlowExe() : after(){
 if ((int)JoinPoint::FID != s.top())
 throw "ControlFlowFaultException";
 }

};

Fig. 6. Control flow checking implementation

72 R. Alexandersson and P. Öhman

A recovery block is an example of a mechanism that is not a crosscutting concern.
It is built to monitor a single function and is applied at a single location in the pro-
gram. This is normally true for all software fault tolerance mechanisms built on de-
sign diversity, unless the functionality monitored is in itself crosscutting. This weak-
ens the case for using AOP for this type of mechanism. However, the advantages of
using AOP for recovery blocks are still twofold. The syntactical separation of the
fault tolerance code and the target program is in itself a good thing that improves re-
usability. The other reason for using AOP is that, although the single mechanism is
not crosscutting, the complete fault tolerance framework that it is part of is. For ex-
ample, the recovery block uses the crosscutting implementation of the recovery cache
for doing backward error recovery.

5.5 Control Flow Checking

The implementation of the control flow check mechanism is a good example of both
the advantages and limitations of present day AOP languages. Since AOP languages
lack statement level joinpoints, code can not be added to specific points within a func-
tion body. However, there are discussions on integrating statement level annotations
into the AspectC++ language in the future, which would remove this limitation. As of
today, a block granularity finer than function bodies can not be implemented.

The implementation shown in Figure 6 verifies that the function entered is the one
that was called. When the end of a function body is reached, it verifies that it is the
same function that was entered and, finally, after returning, it verifies that it was the
same function that was returned from.

The control flow mechanism is strictly systematic and as such has been implemented
as a reusable aspect that can be applied to any target program without modification.

6 Related Work

AOP has been discussed for some time in the area of distributed fault tolerance. Fabry
[9] defined custom built AOP languages and used them for a transparent reusable dis-
tributed replication framework. Herrero et al. [10] define an AOP language specifi-
cally designed for writing object replication policies. In [11] AOP is used to move
some functionality from the FT-CORBA middleware to the application while still re-
taining transparency to the application programmer. This is shown to give perform-
ance benefits.

AOP has many characteristics in common with reflection or meta programming.
Meta programming has been successfully used for introducing fault tolerance in soft-
ware, and a number of publications exist on the topic. In [12] Juan Carlos Ruiz et al.
summarize their experience of using meta programming for building fault tolerant dis-
tributed applications. The current work [13] by this group tries to extend the tech-
niques beyond the application layer in order to create a unified meta protocol that can
affect all abstraction layers from kernel OS and up. Jie Xu et al. [14] address the area
of software fault tolerance and show how meta programming can be used in this con-
text. Other work on fault tolerance and meta programming is reported in [15] and
[16], which define meta level design patterns for fault tolerance.

 Implementing Fault Tolerance Using Aspect Oriented Programming 73

7 Conclusion

This paper defines a representative set of mechanisms that can be used for feasi-
bility evaluations of implementation languages and techniques for fault tolerance
purposes. It consists of five fault tolerance mechanisms including recovery cache [3],
time redundant execution [4], recovery blocks [5], runtime checks and control flow
checking [6].

Such evaluations can be used both for selecting implementation techniques and to
serve as a valuable tool in communicating the need of fault tolerance implementations
to language designers.

The representativeness of the chosen set of mechanisms has been argued theoreti-
cally from a structural viewpoint. The usefulness is also verified in a study evaluating
the AspectC++ language [2].

The study showed that only two out of five mechanisms can be implemented using
the current version of AspectC++.

In order to address this, AspectC++ has been extended to fulfill two vital require-
ments elicited from the evaluation. With this extension it is verified that the complete
set can be implemented, thus showing that AspectC++ when extended is generally
feasible for fault tolerance implementations. Hence the advantages introduced by the
aspect oriented programming paradigm can be utilized when implementing fault tol-
erant software in C++.

In addition, a few more language improvements that could further improve the im-
plementations in terms of runtime performance, applicability and reusability were re-
vealed by implementing the mechanisms. These improvements, as well as the lan-
guage extensions implemented, are required or useful for a larger number of fault
tolerance mechanisms, thus proving the usability of the defined set.

Furthermore, the implementations included in this paper demonstrate how reusable
fault tolerance mechanisms can be built using aspect oriented C++, and the advan-
tages compared to using standard C++ are discussed.

Acknowledgements

This research was conducted within the CEDES (Cost Efficient Dependable Elec-
tronic Systems) project, which is funded by IVSS – Intelligent Vehicle Safety Sys-
tems - a Swedish industry and government joint research program. The authors would
like to thank Johan Magnusson for his part in extending AspectC++.

References

1. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: introduction. Communi-
cations of the ACM 44(10), 29–32 (2001)

2. Spinczyk, O., Gal, A., Schröder-Preikschat, W.: AspectC++: An Aspect-Oriented Exten-
sion to C++. In: Proceedings of the 40th International Conference on Technology of Ob-
ject-Oriented Languages and Systems (TOOLS Pacific 2002), Sydney, Australia, pp. 18–
21 (2002)

74 R. Alexandersson and P. Öhman

3. Rodgers, P., Wellings, A.J.: An incremental recovery cache supporting software fault tol-
erance. In: González Harbour, M., la de Puente, J.A. (eds.) Ada-Europe 1999. LNCS,
vol. 1622, pp. 385–396. Springer, Heidelberg (1999)

4. Damm, A.: The effectiveness of software error-detection mechanisms in real-time operat-
ing systems. FTCS Digest of Papers. In: 16th Annual International Symposium on Fault-
Tolerant Computing Systems, Washington DC, USA (1986)

5. Randell, B.: System structure for software fault tolerance. IEEE Transactions on Software
Engineering SE 1(2), 220–232 (1975)

6. Oh, N., Shirvani, P., McCluskey, E.J.: Control-Flow Checking by Software Signatures.
Center for Reliable Computing, Stanford Univ., CA, CRC-TR-00-4 (CSL TR num 00-800)
(2000)

7. Alexandersson, R., Öhman, P., Ivarsson, M.: Aspect oriented software implemented node
level fault tolerance. In: Ninth IASTED International Conference on Software Engineering
and Applications (SEA 2005), Phoenix AZ, USA (2005)

8. Alexandersson, R.: Techniques for software implemented fault tolerance. Technical report
22L, ISSN 1652-876X, Department of Computer Science and Engineering, Chalmers Uni-
versity of Technology, Sweden (2006)

9. Fabry, J.: A Framework for Replication of Objects using Aspect-Oriented Programming.
Phd Thesis, University of Brussel (1998)

10. Herrero, J.L., Sanchez, F., Toro, M.: Fault tolerance as an aspect using JReplica. In: Pro-
ceedings of the Eighth IEEE Workshop on Future trends of Distributed Computing Sys-
tems, October 31- November 2, pp. 201–207. IEEE Computer Society Press, Los Alamitos
(2001)

11. Szentivanyi, D., Nadjm-Tehrani, S.: Aspects for improvement of performance in fault-
tolerant software. In: Proceedings of the 10th IEEE Pacific Rim International Symposium
on Dependable Computing, 3-5 March, pp. 283–291 (2004)

12. Ruiz, J.C., Killijian, M.O., Fabre, J.C., Thévenod-Fosse, P.: Reflective Fault-Tolerant Sys-
tems: From Experience to Challenges. IEEE Transactions On Computers 52(2), 237–254
(2003)

13. Taiani, F., Fabre, J.C., Killijian, M.O.: A multi-level meta-object protocol for fault-
tolerance in complex architectures. In: Proceedings of the International Conference on De-
pendable Systems and Networks, 2005 (DSN 2005), 28 June-July 1, pp. 270–279 (2005)

14. Xu, J., Randell, B., Zorzo, A.F.: Implementing Software-Fault Tolerance in C++ and Open
C++. In: Min, Y., Tang, D. (eds.) Proceedings of the 1996 International Workshop on
Computer-Aided Design, Test, and Evaluation for Dependability (CADTED ’96), Beijing
China, pp. 224–229 (1996)

15. Cheynet, P., Nicolescu, B., Velazco, R., Rebaudengo, M., Sonza Reorda, M., Violante, M.:
Experimentally evaluating an automatic approach for generating safety-critical software
with respect to transient errors. IEEE Transaction on Nuclear Science 47(6), 2231–2236
(2000)

16. Lisboa, M.L.B.: A new trend on the development of fault-tolerant applications: software
meta-level architectures. In: Proceedings of the International Workshop on Dependable
Computing and its Applications (IFIP’98) (1998)

Architecture-Centric Fault Tolerance with

Exception Handling

Patrick H. S. Brito1, Rogério de Lemos2,
Eliane Martins1, and Cećılia M. F. Rubira1

1 Institute of Computing – State University of Campinas (Unicamp)
P.O. Box 6176, 13084-971, Campinas, SP, Brazil

{pbrito,eliane,cmrubira}@ic.unicamp.br
2 Computing Laboratory – University of Kent

Canterbury, U.K.
r.delemos@kent.ac.uk

Abstract. When building dependable systems by integrating untrusted
software components that were not originally designed to interact with
each other, it is inevitable the occurrence of architectural mismatches
related to assumptions in the failure behaviours. These mismatches if
not prevented during system design have to be tolerated during run-
time. This paper presents an architectural abstraction based on ex-
ception handling for structuring fault-tolerant software systems. This
abstraction comprises several components and connectors that transform
an existing untrusted software element into an idealised fault-tolerant ar-
chitectural element. The proposed rigorous approach relies on a formal
representation for analysing exception propagation, and verifying impor-
tant dependability properties. Beyond this, the formal models are also
used for generating unit and integration test cases that would be used
for validating the final software product. The feasibility of the proposed
approach was evaluated on an embedded critical case study.

1 Introduction

The adoption of software components, which used to be restricted to the con-
struction of enterprise systems, has expanded to other application areas where
the cost of failure might be unacceptable. Software systems that can cause risks
for human lives or great financial losses can be made fault-tolerant, so that they
are capable of providing their intended service, even if only partially, despite the
presence of faults. Amongst the several existing techniques for building fault-
tolerant systems, exception handling is a well-known mechanism for structuring
error recovery in software systems [13]. Exception handling complements other
techniques for error recovery, such as atomic transactions [19], and aims to sup-
port the construction of programs that are more reliable, concise, and easy to
evolve [25]. The use of exception handling to develop large-scale software sys-
tems [9,27], together with the fact that it is implemented by several modern
object-oriented languages, such as, Java, Ada, C#, and C++, and component

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 75–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 P.H.S. Brito et al.

models, such as, CCM, EJB, Ice, and .NET, confirms its importance to the
current practice of software development. Furthermore, in applications where a
rollback is not possible, such as those that interact with physical environments,
exception handling may be the only choice available. On the other hand, it is
also accepted that exception handling mechanism might have its disadvantages,
if we consider the fact that a large part of a system’s code is devoted to er-
ror detection and handling [13,27,31]. As a consequence, abnormal (exceptional)
behaviour has to be carefully structured, in order to reduce its impact on the
overall complexity of the software.

In this paper, we present an architectural approach for structuring fault-
tolerant software systems so that mechanisms for detecting and handling errors
have minimal impact on the overall system complexity. The motivation for this
work is twofold. First, it is widely accepted that the architecture of a software
system has a strong impact on its capacity to meet its intended quality re-
quirements [4]. And second, it is also accepted that dependability of a software
system is inherently associated with its structure [26]. The contribution of this
paper is on the provision of an architectural solution, which is integrated with
a development approach for improving the dependability of component-based
software systems. The paper will focus into three major issues: (i) the specifica-
tion and verification of the architectural abstraction using a combination of the
B-Method and CSP, what includes the refinement of the exceptional behaviour
with more details about exception types and the way the architectural element
reacts with each exception type; (ii) the definition of architectural properties
for analysing exception propagation and fault tolerance aspects of architectural
elements; and (iii) the generation of unit and integration test cases from the
architectural specification.

The architectural abstraction adopted in this work, namely the idealised fault
tolerant architectural element (iFTE), was initially proposed as an abstraction
for structuring complex fault-tolerant systems [17]. The formal definition and
verification of the iFTE, as an architectural abstraction, was subsequently per-
formed in terms of the B-Method and CSP [7]. This formal modelling has en-
abled the representation of architectural configurations based on the iFTE, thus
allowing the formal verification of error handling properties, including exception
propagation, and the automatic generation of test cases for integration of iFTEs.
In this paper, that previous work is expanded by defining the internal structure
of an iFTE, in terms of further components and connectors that enable the inte-
gration of existing components into architectural configurations based on iFTEs.
Besides that, we have formally specified the iFTE abstraction in such a way the
formal model of an iFTE element can be used as part of a complementary model
for dependable software architectures, where are verified properties regarding
exception propagation among iFTEs and non-iFTE elements disposed together
according to an architectural configuration. The detailed modelling of the iFTE
also enforces the separation between normal and exceptional behaviours and
allows us to verify and validate how the iFTE internal elements are able to
implement the behaviour of the architectural elements.

Architecture-Centric Fault Tolerance with Exception Handling 77

The rest of this paper is organised as follows. The following two sections
present, respectively, some related work and a brief background about the area
of architectural fault tolerance based on exception handling. Section 4 describes
an architectural solution for structuring dependable architectural elements. The
formal verification of this structuring solution, as well as its formal representa-
tion, are presented in Section 5. Section 6 presents the method for generating
test cases for the architectural elements. In Section 7 the feasibility of the overall
approach is evaluated in the context of an embedded critical case study. Finally,
the last section provides some concluding remarks and future directions of re-
search.

2 Related Work

A contribution of a structuring technique for error confinement is the idealised
C2 component (iC2C) [16], based on the idealised fault-tolerant component [3].
It has been proposed for structuring software systems compliant with the C2
architectural style [30]. The internal protocol followed by the internal elements
of an iC2C enforces error confinement and makes it possible to define multiple
exception handling contexts at the architectural level. Later work by Castor
et al. [11] defined and implemented an architectural level exception handling
mechanism based on the concept of iC2C. The work presented in this paper can
be seen as an extension of the iC2C for a broader class of software architectures
that adhere to the peer-to-peer architectural style [12].

In a previous work, Brito et al. [15] have proposed a systematic approach for
the specification and validation of exceptional behaviour for component-based
software systems in which the validation was provided through the generation of
unit test cases. The work reported in this paper is different from that work on
several fronts, although the validation process is similar. The main focus in this
paper is on the formal specification of iFTE-based software architectures from
which both unit and integration test cases are automatically generated.

In another related work, the Aereal framework leverages existing languages
and tools to support the description and analysis of exception flow in software
architectures adhering to multiple architectural styles [10]. In terms of verifica-
tion, both works have similar goals, however Aereal did not model the interplay
between an architectural element and the error recovery mechanisms that make
it fault-tolerant. Another important difference is that in the proposed approach
the architectural behaviour related to error handling is specified in terms of sce-
narios, which increases its scalability because it reduces the number of states
generated during the architectural verification.

Seminal work by Issarny and Banâtre [20] describes an extension to archi-
tectural description languages that allows for the specification of architectural
invariants. Violations of these invariants, called configuration exceptions, trigger
architectural reconfigurations. This work differs from ours because it emphasises
fault handling at the architectural level. Our work, on the other hand, emphasises
error recovery.

78 P.H.S. Brito et al.

3 Background

3.1 iFTE: Idealised Fault-Tolerant Architectural Element

The idealised fault-tolerant architectural element (iFTE) [17] is an architectural
abstraction for structuring fault-tolerant systems, which enforces the principles
associated with the concept of the idealised fault-tolerant component [23], and
includes responsibilities for detecting errors in the architectural elements, as well
as handling and propagating exceptions in a structured way.

The general model of an iFTE defines four types of external interfaces, and
these are clearly partitioned into normal and abnormal (exceptional) behaviour:
(i) I iFTE PS defines an access point for the (fault-tolerant) services provided by
the iFTE; (ii) I iFTE RS specifies services required by the iFTE for implementing
its normal behaviour or handling exceptions; (iii) I iFTE PE defines an access
point where iFTE signals its external exceptions; and (iv) I iFTE RE specifies
the external exceptions that the iFTE is able to handle. These interfaces can
be detailed according to specific provided and required services of an iFTE, as
well as its exception types. As it could be seen, while the two first interfaces
(I iFTE PS and I iFTE RS) are responsible for the normal behaviour, the two
last ones are responsible for the abnormal behaviour.

Looking for the iFTE as an architectural abstraction, there are seven dif-
ferent scenarios that describe the relationship that can be established between
the external interfaces of an iFTE. After a request is made through I iFTE PS,
the iFTE may respond in two different ways: returns normal services through
I iFTE PS (1st scenario); signals an interface exception through I iFTE PE (2nd

scenario); or signals a failure exception through I iFTE PE (3rd scenario). Be-
sides that it is possible to request external services through I iFTE RS. After
requesting external services, four scenarios are possible. If the external architec-
tural element returns normal services through I iFTE RS, the iFTE either returns
normal services through I iFTE PS (4th scenario), or signals an exception through
I iFTE PE (5th scenario). If the external architectural element signals an excep-
tion, the iFTE either propagates the error through I iFTE PE (6th scenario), or
recover its state, returning normally through I iFTE PS (7th scenario).

3.2 Formal Anotation and Verification

The B-Method [1] is a formal method based on set theory, where sets and re-
lations among sets are used for data modelling, and operations describe state
modifications. A limitation of the B-Method is its inability to easily restrict the
correct order of operations. Communicating Sequential Process (CSP) [8] is a
process algebra that allows an easy representation of execution sequences. In
this way, when used for guiding the execution of B-Method operations, CSP
compensates the mentioned limitation of B-Method [28,24].

Because of their complementary characteristics, there are many approaches
that combine set-based notations with algebra processes. ProB [24] is a model
checker that combines B-Method and CSP into a complementary way. As a

Architecture-Centric Fault Tolerance with Exception Handling 79

joining point between the two notations, the B-Method operations in ProB are
represented as single events in the CSP specification. Thus, when it is used a
CSP model to guide a B-Method machine, ProB uses the order of the CSP events
for restricting the B-Method operations that can be executed.

4 Detailing the iFTE

4.1 Structure of the iFTE

The detailed design of an iFTE is shown in Figure 1, and it contains five archi-
tectural elements: (i) the Normal component implements the normal behaviour
of the iFTE; (ii) the Abnormal component handles the exceptions raised (or cre-
ated) by the Normal component, and those propagated (or signalled) from the
environment of the iFTE; (iii) the Provided component acts like a bridge between
the services provided by the iFTE and its environment, including the signal of
exceptions; (iv) the Required component also acts like a bridge, but between the
required services of the iFTE and its environment; and (v) the Coordinator con-
nector coordinates the interaction between the four internal components of an
iFTE.

Fig. 1. Internal structure of the idealised fault-tolerant architectural element (iFTE)

To maintain the separation of concerns, between the normal and exceptional
behaviours, the Abnormal component is the only one that handles exceptions.
The Provided and Required only propagate exceptions to the Abnormal, mediat-
ing the access between the iFTE and the external environment. About the Normal
component, besides propagating exceptions to the Abnormal, it can identify ex-
ceptional conditions and raise exceptions. The internal architectural elements of
the iFTE interact through internal interfaces, and these interfaces also enforce
the separation between normal and exceptional behaviours.

80 P.H.S. Brito et al.

Since the Normal component is responsible for providing functionalities of the
iFTE, it might be an existing component that needs to be incorporated into
the architecture. Before using a COTS component as the Normal element of an
iFTE, it is necessary to adapt it, in order to make it compatible with the four
internal interfaces of the Normal. As presented in Figure 2, the structure of the
Normal after reusing a COTS component is composed of three elements: the
COTS component, which has to be reused; a NormalProvided adapter, which is
responsible to convert all the provided interfaces of the COTS into the I N PS and
I N PE interfaces; and a NormalRequired adapter, which is responsible to convert
all the required interfaces of the COTS into the I N RS and I N RE interfaces.

<< component >>

Normal

IProv1 IReq1
<< COTS component >>

ReusedCompA

<< connector >>

NormalRequired
<< connector >>

NormalProvided

I_N_RSI_N_PS I_N_PE I_N_RE

Fig. 2. Adaptation of a COTS Normal component

Besides the adaptation of a COTS Normal component, the iFTE also sup-
ports the adaptation of inconsistencies among architectural elements. This com-
plementary and high-level adaptation is provided by the Provided and Required
components presented in Figure 1.

4.2 Detailed Execution Scenarios

Analysing the interaction among the internal elements of the iFTE, we have
identified 12 basic scenarios. These scenarios do not consider the requests that
the Abnormal component can do for providing the handling services, which in-
cludes its internal requests to the Normal component, and its external requests
to the Required.

After a request is made through I iFTE PS, the Provided component may re-
spond in two different ways: (i) signals an interface exception through I iFTE PE
(1st basic scenario); or (ii) requests the respective service of the Normal compo-
nent from I P RS to I N PS, mediated by the Coordinator connector. When the
Normal component receives a service request, it can behave in three different
ways: (i) returns normally to the Provided from I N PS to I P RS (2nd basic sce-
nario); (ii) signals an internal exception through I N PE; or (iii) requests an ex-
ternal service. When the Normal component signals an exception through I N PE,
the Coordinator connector propagates it to the Abnormal through I A RE. After
executing the handler, whose behaviour is omitted here, the Abnormal either sig-
nals a failure exception through I A PE (3rd basic scenario), or return normally

Architecture-Centric Fault Tolerance with Exception Handling 81

through I A PS, masking the error (4th basic scenario). When the Normal com-
ponent requests external services through I N RS, the Coordinator propagates
the request to the Required through I R PS. After this, the Required requests the
service for an external element through I IFTE RS and can receive two different
responses: (i) a normal response through I IFTE RS (5th basic scenario); or (ii) an
exception through I IFTE RE. In the last case, the external exception is propa-
gated to the Abnormal (from I R PE to I A RE through the Coordinator), which
tries to handle it. The Abnormal can provide either a failure exception through
I A PE (6th basic scenario), or a normal response through I A PS, masking the
external exception (7th basic scenario).

The other five scenarios where derived from the composition of the seven basic
scenarios that were presented. Before the iFTE raises an internal exception, it
could have successfully executed an external service (external request followed by
an internal exception). In this case, the iFTE can either mask the exception (8th

basic scenario), or fail (9th basic scenario). When the Normal requests an external
service after it had masked an internal exception, it can receive an exceptional
response (masked internal exception followed by an external exception). In this
case, the Abnormal component tries to handle it. If the external exception is
masked, it constitutes the 10th basic scenario, which masks both internal and
external exceptions. If the external exception could not be successfully handled,
the Abnormal component returns exceptionally and the iFTE crashes (11th basic
scenario). Finally, the 12th basic scenario occurs when although the iFTE could
mask an external exception (Scenario 7), it could not mask a following internal
one.

5 Formal Specification and Verification of the iFTE

Although the iFTE abstraction has been partially verified in a previous work [17],
this verification had used an extended timed automata notation, which has not
the sufficient support for verifying the architectural elements in a specific ar-
chitectural context, considering specific provided and required services and the
respective exceptions. Besides, to support the development of component-based
software systems, it is necessary to consider the behaviour of different iFTEs
connected together into a fault-tolerant software architecture. In order to model
and verify the fault-tolerant properties of a software architecture, we have used
the combination of B-Method and CSP, supported by the ProB model checker.

As presented in Section 3.2, the combined use of B-Method and CSP provides
a way for representing complex states and relationships among the internal el-
ements of the iFTE. Since the internal elements were represented in B-Method
through mathematical sets, the relationships among them were naturally rep-
resented through relations between sets. Although other formal notations, such
as UPPAAL [2], represent internal states, most of them do not provide a way
for representing neither types nor relationships among them, what is essential
for specifying specific exceptional behaviours, depending on the type of the ex-
ception that was raised or propagated. Besides that, although other formalisms,

82 P.H.S. Brito et al.

such as SMV [18], reason about types and relations between types, they do not
provide an intuitive way to represent specific execution scenarios, what reduces
the state explosion necessary for verifying the formal model, and is essential for
generating test cases.

5.1 Formal Specification of the iFTE

We have defined two models that can be instantiated for representing an iFTE
element: the abstract model, which specify only the external behaviour of the
iFTE [7], and the detailed model, which includes the internal elements of the
iFTE. Both models are composed of a B-Method machine, which specifies the
structural elements of the iFTE, and a CSP behaviour specification, which re-
stricts the interaction among the elements defined in B-Method. Due to space
limitations, this paper will present only the detailed model of the iFTE. The
abstract model was specified in a similar way [7].

Detailed Model of the iFTE. Figure 3 presents part of the B-Method ma-
chine of the detailed model. As it can be seen, the machine explicitly repre-
sents the structural characteristic of the iFTE: its internal elements, through
the InternalElements set (Line 4); its interfaces with the direction of the
event (input/output), through the the InterfaceParts set (Line 5); the pro-
vided and required services of each internal component, through eight sets: a
<component>ProvidedServices and a <component>RequiredServices for
each component (Lines 7 to 14), and the respective provided and required ex-
ceptions (Lines 16 to 23). Beyond representing the exceptions themselves, it is
necessary to relate the exceptions and the services that propagate them. This
information is represented through relations from a service to a power set of ex-
ceptions (Lines 26 to 33). Finally, since the ProB model checker works through
the execution of B-Method operations, the proposed model defines three oper-
ations for each normal interface (I <component> PS and I <component> RS):
a service request, a normal response, and an exceptional response. Operations
in Lines 39 to 41 represent a service request to the iFTE (via the Provided in-
ternal component) and the respective returns through I iFTE PS and I iFTE PE
interfaces. Lines 45 to 47 refer to the I iFTE RS and I iFTE RE interfaces. Ex-
actly the same occurs with each one of the internal interfaces, but for space
limitations, this information was omitted from the figure. Beyond the structural
information of the iFTE, the B-Method machine also defines other variables that
stores valuable data for verification purpose, for example, the sequenceHistory
variable stores the order that the B-Method operations where executed, what
can be used for identifying the execution scenarios. In the B-Method notation,
the types of the variables are represented through invariants. The verification of
type violation is proceeded during the model-checking process. But due to space
limitations, Figure 3 does not present the variants definition.

As can be seen in Figure 4, using an external choice operator ([]), the CSP
model defines all the possible combination of executions. For example, Line 3
states that after executing the IFTE PS req operation for a specific provided
service (PS), the next operation has to be either an exceptional return (interface

Architecture-Centric Fault Tolerance with Exception Handling 83

1 MACHINE abstractModel
2 /∗ ============================== ∗/
3 SETS
4 Interna lE lements = {provided , normal , coord inator , abnormal ,

r equ i r ed } ;
5 I n t e r f a c ePa r t s = { i i f t e p s i , i i f t e p s o , i i f t e p e o , i p r s o ,

i p r s i , i p r e i , i n p s i , i n p s o , i n pe o , i n r s o , i n r s i ,
i n r e i , i a p s i , i a p s o , i a p e o , i a r s o , i a r s i , i a r e i ,
i r p s i , i r p s o , i r p e o , i i f t e r s o , i i f t e r s i , i i f t e r e i } ;

6

7 IFTEProvidedServices = { i f tePS1 , i f t ePS2 } ;
8 ProvRequiredServ ices = {provRS1 , provRS2 } ;
9 NorProvidedServ ices = {norPS1 , norPS2 } ;

10 NorRequiredServ ices = {norRS1 , norRS2 } ;
11 AbnProvidedServices = {abnPS1 , abnPS2 } ;
12 AbnRequiredServices = {abnRS1 , abnRS2 } ;
13 ReqProvidedServices = {reqPS1 , reqPS2 } ;
14 IFTERequiredServices = { i f teRS1 , i f t eRS2 } ;
15

16 IFTEProvidedExceptions = { i ftePE1 , i f tePE2 } ;
17 ProvRequiredExceptions = {provRE1 , provRE2 } ;
18 NorProvidedExceptions = {norPE1 , norPE2 } ;
19 NorRequiredExceptions = {norRE1 , norRE2 } ;
20 AbnProvidedExceptions = {abnPE1 , abnPE2 } ;
21 AbnRequiredExceptions = {norRE1 , abnRE2} ;
22 ReqProvidedExceptions = {reqPE1 , reqPE2 } ;
23 IFTERequiredExceptions = { i fteRE1 , i fteRE2 } ;
24 /∗ ============================== ∗/
25 VARIABLES
26 i f t ePSe rv i c eExcept i on s , /∗ r e l a t i o n : IFTEProvidedServices −−>

powerSet (IFTEProvidedExceptions) ∗/
27 provRServiceExceptions , /∗ r e l a t i o n : ProvRequiredServ ices −−>

powerSet (ProvRequiredExceptions) ∗/
28 norPServiceExcept ions , /∗ r e l a t i o n : . . . ∗ /
29 norRServiceExcept ions , /∗ r e l a t i o n : . . . ∗ /
30 abnPServiceExceptions , /∗ r e l a t i o n : . . . ∗ /
31 abnRServiceExceptions , /∗ r e l a t i o n : . . . ∗ /
32 reqPServ iceExcept ions , /∗ r e l a t i o n : . . . ∗ /
33 i f t eRServ i c eExcept i ons , /∗ r e l a t i o n : . . . ∗ /
34 . . . /∗ other v a r i a b l e s ∗/
35 . . .
36 /∗ ============================== ∗/
37 OPERATIONS
38 /∗ I IFTE PS & I IFTE PE∗/
39 IFTE PS req (s e r v i c e) = . . .
40 re sp <−− IFTE PS resp (s e r v i c e) = . . .
41 re sp <−− IFTE PE resp (s e r v i c e) = . . .
42 /∗ INTERNAL INTERFACES∗/
43 . . . /∗not r epre s ented ∗/
44 /∗ I IFTE RS & I IFTE RE∗/
45 IFTE RS req (s e r v i c e) = . . .
46 re sp <−− IFTE RS resp (s e r v i c e) = . . .
47 re sp <−− IFTE RE resp (s e r v i c e) = . . .

Fig. 3. B-Method machine of an iFTE

exception) (Lines 7 and 8 - Scenario 1) or a request for an internal service
of the Normal component through the Coordinator connector (Lines 7 and 11).
When the Normal receives a service request, it may behaves in three different
ways (Line 14): (i) returns normally (Lines 14 and 15); (ii) raises an exception
(Lines 14 and 16), or (iii) requests external services through the Coordinator
connector (Lines 24 and 19).

84 P.H.S. Brito et al.

1 −−SPECIFICATION:
2 MAIN = Star t −> CLIENT ; ;
3 CLIENT = (IFTE PS req .PS −> PROVIDED(PS) [] Stop −> MAIN) ; ;
4

5

6 −− Cl i ent −> Provided
7 PROVIDED(PS) = (INTERFACE EXCEPTION [] (P RS req .RS −>

PROVIDED COORDINATOR(PS ,RS))) ; ;
8 INTERFACE EXCEPTION = IFTE PE resp .PS?E −> Stop −> MAIN; ;
9

10 −− Provided −> Coordinator
11 PROVIDED COORDINATOR(PS1 ,RS1) = (N PS req .PS −> NORMAL(PS1 ,RS1 ,PS)) ; ;
12

13 −− Coordinator −> Normal
14 NORMAL(PS1 ,RS1 , PS2) = (NORMAL NORMAL REPONSE(PS1 ,RS1 , PS2) []

NORMAL RAISES EXCEPTION(PS1 ,RS1 , PS2) [] (N RS req .RS −>

NORMALCOORDINATOR(PS1 ,RS1 , PS2 ,RS))) ; ;
15 NORMAL NORMAL REPONSE(PS1 ,RS1 , PS2) = N PS resp . PS2 −> P RS resp .RS2−>

PROVIDED ADAPTER; ;
16 NORMAL RAISES EXCEPTION(PS1 ,RS1 , PS2) = N PE resp . PS2?E −> HANDLING NOR(E

) ; ; −−i n t e r n a l except ion
17

18 −− Normal −> Coordinator
19 NORMALCOORDINATOR = . . .
20 . . .

Fig. 4. CSP specification of an iFTE

After representing the iFTE elements using the detailed model (B-Method
and CSP), it is necessary to contextualise these elements together, through the
architectural model. This contextualised representation is outside the context
of this paper. Details about the architectural models and the verification of
exception flow in the software architecture are available elsewhere [7,14].

5.2 Verification Process

Intending to remove faults early in the software development, the verification
process consists on two steps, executed sequentially: (i) generate all possible
execution scenarios; and (ii) verify the dependability properties of each scenario.
First, we extract the scenarios from the model with a specialised tool for
this purpose. From the CSP specification and the B-Method machine of an
architectural element, a set of other CSP files are generated, one CSP file
per scenario. A scenario is a sequence of B-Method operations that starts
with a request through the IFTE PS req operation, which corresponds to the
I IFTE PS interface of the Provided internal component, and finishes with
the respective response (normal or exceptional). The second step consists
on using the ProB model checker for verifying some properties of interest
related with fault tolerance. These properties, which are presented in Sec-
tion 5.3, are verified for the B-Method machine of the software architecture,
guided by each one of the CSP scenarios generated in the previous step.
The verification of these properties in the ProB model checker consists on

Architecture-Centric Fault Tolerance with Exception Handling 85

trying to find counter examples of scenarios, analysing the content of the
sequenceHistory variable of the iFTE model. The sequenceHistory variable
is a sequence of three-tuples (interfaceType, service, abnReturn), where
interfaceType is determines both the interface and the type of the event
(request or response), service is a service that is the objective of the execution,
and abnReturn represents the exceptional response of the service request, if it
occurs. In case of requests and normal responses, its value is represented as an
empty set ({}). In other words, interfacePart ∈ InterfaceParts, service
∈ <component>ProvidedServices

⋃
<component>RequiredServices,

and abnReturn ∈ <component>ProvidedExceptions
⋃

<component>RequiredExceptions.

5.3 Verified Properties of Interest

In order to verify the internal integrity of the iFTE, we have specified five general
properties (Table 1), which are related to both general and detailed models, and
other seven detailed properties (Table 2), which are related only to the detailed
model and verify the consistency of the propagation of exceptions among the
iFTE internal parts.

Table 1. General properties of an iFTE (both models)

Property
1 The instantiation of the iFTE has to be free of deadlocks.

2 All required exceptions (IFTERequiredExceptions) have to be handled by the
iFTE.

3 An exception can only be masked, if it is explicitly declared as maskable by the
iFTE.

4 For each exception which can be masked, there has to be a scenario that mask it.

5 The iFTE can only signal or propagate external exceptions.

As an example, the general property 2 is specified as follows:
“∀re ∈ IFTERequiredExceptions,∃rs ∈ IFTERequiredServices •
re ∈ ifteRServiceExceptions(rs)”. In a similar way, the detailed property 1, which
states that if there is no exception in the scenario, the Abnormal component can-
not participate on it, ratifying the separation of concerns, since the abnormal is
only responsible for handling exceptions. Remembering that a PS i represents a
request of handling to the Abnormal component; ifte RE i represents an incoming
exception from an external server to the iFTE; and ifte PE o represents an out-
come exception from the iFTE to an external client, this property was specified as
follows: “∀s ∈<component>ProvidedServices

⋃
<component>RequiredServices, e ∈

<component>ProvidedExceptions
⋃

<component>RequiredExceptions •
((ifte RE i, s, e) �∈ sequenceHistiry ∧ (ifte PE o, s, e) �∈ sequenceHistory) ⇒
(a PS i, s, e) �∈ sequenceHistory”.

86 P.H.S. Brito et al.

Table 2. Detailed properties of an iFTE (detailed model)

Property
1 When no exception is caught or thrown by an iFTE, the state of the Abnormal

component remains the same (it does not receive any request).

2 After receiving a request, the Coordinator connector does not interact with the
Abnormal component before receiving some response from the Normal component.

3 If the Normal component raises an exception that the Abnormal cannot mask, either
the iFTE propagates the exception, or converts it.

4 If the Required connector receives an exception that the Abnormal cannot mask,
either the iFTE propagates the exception, or converts it.

5 If the Normal component raises an exception that the Abnormal can mask, then it
is possible that the Abnormal returns normally to the Coordinator.

6 If the Required connector receives an exception that the Abnormal can mask, then
it is possible that the Abnormal returns normally to the Coordinator.

7 Only the Abnormal component may mask or convert exceptions.

6 Test Cases Generation

Test cases generation follows the model-based approach [6,5], and most of which
can be automated. All the testing artifacts can be reused each time the compo-
nent is tested: during its development or each time it is reused. Because of this,
the component testing can be performed in a black-box way, allowing test cases
reuse even without component source code.

For generating test cases for a provided service of an iFTE, it is necessary to
generate a sequence graph, which represents the execution of the internal and
required services that the provided service requires, as well as the respective
normal and abnormal returns. The graph consists on a graphical representation
of the formal models of the iFTE (Section 5.1), which is constructed for each
one of its provided services. The nodes of the graph are identified from the
B-Method machine, while the edges are identified from the CSP specification.
Besides identifying the graph itself (nodes and edges), the proposed approach
aims to organise the position of their nodes according to the iFTE structure.
For this, it is defined a partition1 for each interface of the iFTE. Thus, four
partitions are defined for the abstract model, and sixteen for the detailed one.

First of all, the provided service that the graph refers is represented as a node
of the I X PS partition, where X depends on the element whose graph represents:
P for Provided, N for Normal, A for Abnormal, R for Required, and IFTE for the
abstraction itself. The provided service the root node, which is the starting
point for covering the graph. In the same way, each required service that an
element needs for executing a provided service is represented as a node of the
I X RS partition. The subset of required services of a specific provided service
is determined by the CSP model. The exceptional returns of these required
services are represented as nodes of the I X RE partition. About the exceptional

1 Known as swim lane in UML Activity Diagram nomenclature.

Architecture-Centric Fault Tolerance with Exception Handling 87

returns of the provided service, the nodes are positioned into the I X PE partition,
and are considered leaf nodes, which is an end point for covering the graph.
Because the Coordinator is a connector that refers only to the interfaces of the
internal components (it does not define any new interface), after representing
the sequence of execution among the four internal components, the behaviour of
the Coordinator is immediately represented. Thus, the Coordinator’s test cases are
generated from the interaction between the I X RS and I X PS interfaces of the
internal components of the iFTE: Provided, Normal, Abnormal, and Required. For
example, the execution of a service from I P RS followed by a service from I N PS
indicates that the Coordinator has to mediate the request from the Provided to the
Normal component, converting data types when necessary. In the inverse order
(I N PS → I P RS) it indicates that the Coordinator has to mediate a normal
response from the Normal to the Provided. Analysing all the sequences between
the required and provided services of the internal components, it is possible to
generate the test cases of the Coordinator element.

In the sequence graph, the order among the nodes (service request, and the
respective returns) is indicated through directional edges, which are derived from
the CSP model.

After constructing this graph, we follow the MDCE+ [15] criteria, where each
path from the start to a final node is considered a test-case. Besides the identifica-
tion of the test cases (paths of the graph), this testing artifacts are also useful for
deriving stub synchronisation commands, because they illustrate the sequence
on which the required services are called, as well as the respective returns of
these services. Stubs replace required elements, simulating their behaviour in a
controlled way, and making it possible to observe component behaviour under
test in normal and exceptional situations related to interactions with required
services.

Besides the generation of the test cases, it is necessary to determine the best
order for executing them. For this, it is generated other testing artifact: the
execution flow graph, which is a dependency graph that illustrates the sequential
dependencies among the provided services of an architectural element. Beyond
its usefulness for determine the best order for proceeding the test, the execution
flow graph also derives test drivers, which execute test cases.

About the testing activities, iFTEs are tested using test cases generated cover-
ing the graph presented in this section. In this way, the test cases can either take
into consideration the internal elements of the iFTE (its detailed structure),
or generate test cases for the abstraction itself, considering only the external
interfaces of the iFTE (I IFTE PS, I IFTE PE, I IFTE RS, and I IFTE RE).

7 Case Study: Mining Control System

The running example taken into consideration is a simplified version of the con-
trol system for a mining environment [29]. The extraction of minerals from a
mine produces water and releases methane gas to the air. In addition to extract-
ing minerals, the mining control system is used to drain water from the sump,

88 P.H.S. Brito et al.

and to remove air from the mine when the methane level becomes high. The sys-
tem is composed by three main sub-systems: MineralExtractorController, which
controls the extraction of minerals; PumpController, which controls the level of
water; and AirExtractorController, which controls the level of methane. When the
water reaches a high level, the pump is turned on and the sump is drained until
the water reaches a low level. A water flow sensor is able to detect the flow of
water in the pipe. However, the pump is situated underground, and for safety
reasons it must not start, or continue to run, when the amount of methane in
the mine exceeds a safety limit. For controlling the level of methane, there is
an air extractor controller that monitors the level of methane inside the mine,
and when the level is high an air extractor is switched on to remove air from
the mine. The whole system is also controlled from the surface via an operator
console that should handle any emergencies raised by the automatic system.

7.1 Software Architecture Specification

Figure 5 presents the software architecture of the mining control system using
the UML 2.0 notation; the links between the architectural elements are repre-
sented as dependencies. As can be seen, the architecture is composed of eleven
components, four of them are sensors: (i) MethaneLevel, which detects the level
of methane inside the mine; (ii) AirFlow, which detects the flow of air inside
the pipes; (iii) WaterLevel, which detects the level of water inside the mine; and
(iv) WaterFlow, which detects the flow of water inside the pipes.

To illustrate the structure of the iFTEs of the software architecture, Figure 6
presents the internal details of the PumpController and Pump architectural el-
ements. As can be seen, in the Required component of the PumpController and
the Provided component of the Pump are responsible for enabling the interac-
tion, adapting the received service requests (Provided), and the respective return
values (Required).

In this architectural configuration, it is assumed that all the architectural
elements are iFTEs, except for the four sensors. The three controllers that
were identified (MineralExtractorController, AirExtractorController, and PumpCon-
troller), have the role of architectural connectors (�iFTEConnectors�). Each

<< iFTComponent >>

OperatorInterface
<< iFTConnector >>

MineralExtraxtorController

<< Component >>

WaterLevel

<< iFTComponent >>

AirExtractor

<< Component >>

AirFlow

<< iFTComponent >>

MineralExtractor

<< iFTComponent >>

Pump

<< Component >>

WaterFlow

I_OI_PS

I_OI_PE

I_IO_RS

I_IO_RE

I_MEC_PS

I_MEC_PE

I_AEC_PS

I_AE_PS

I_AE_PE

I_AF_PS

I_ME_PS

I_ME_PE

I_P_PS

I_P_PE

I_WF_PS

I_MEC_RS

I_PC_RSI_MEC_RE

I_AEC_PE

I_PC_PE

I_PC_PS

<< Component >>

MethaneLevel

<< iFTConnector >>

AirExtractorController

<< iFTConnector >>

PumpController

I_WL_PS

I_PC_RE

I_AEC_RE

I_AEC_RS

I_ML_PS

Fig. 5. Architectural Configuration of the Mining Control System

Architecture-Centric Fault Tolerance with Exception Handling 89

<< component >>

Provided

<< component >>

Normal

<< connector >>

Coordinator

<< component >>

Required

<< component >>

Abnormal

I_PC_PS

I_PC_PE

I_P_RS

I_P_RE

I_N_PS

I_N_PE

I_N_RS

I_N_RE

. I_R_PS

I_R_PE

I_PC_RS

I_PC_RE

I_A_PS

.
I_A_PE

I_A_RS

I_A_RE.

PumpController
<<iFTConnector>>

<< connector >>

Coordinator

I_R_PEI_P_RE

<< component >>

Normal

I_R_PSI_P_RS

<< component >>

Provided

I_P_PE

I_P_PS

I_A_RE

I_A_RS

I_A_PE

I_N_RE

I_A_PS

I_N_RS

I_N_PE

I_N_PS

<< component >>

Abnormal

<< component >>

Required

.

.
.

Pump
<<iFTComponent>>

Fig. 6. Partially Detailed View of the Mining Control System Architecture

controller is responsible for dealing with the normal behaviour of the system, and
handling any exceptions that are propagated by the components. Depending on
the state of the sensors, one of the controllers will be always activated: (i) water
low & methane low ⇒ MineralExtractorController; (ii) water high & methane low
⇒ PumpController; and (iii) methane high ⇒ AirExtractorController. In case there
is a failure that cannot be handled by the system, this connector has to notify
the OperatorInterface element.

It was specified a total of 13 architectural exceptions, which flows between ar-
chitectural elements (iFTEs and non-iFTEs). For exemplifying the flow of ex-
ceptions, in the following, we consider the case in which the AirExtractor fails.
When an error is detected inside the AirExtractor, an internal exception is raised
and locally handled. If AirExtractor is not able to handle this exception, it prop-
agates an exception to AirExtractorController. Again this component attempts to
handle this exception at the role context, but if it fails, it propagates the excep-
tion to MileralExtractorController. Since the concentration of methane is high and
the AirExtractor has failed, there is nothing that MileralExtractorController can do,
except to propagate an exception among its collaborating architectural elements.
Upon receiving this exception, the MineralExtractor, the PumpController and the
AirExtractorController should shut down their activities, and the OperatorInterface
should raise an alarm for the operator to take the appropriate measures.

7.2 Software Architecture Verification

The verification process of the software architecture consists on three activities:
(i) verification of the architectural elements that are instantiations of the iFTE;
(ii) verification of the software architecture in terms of exception propagation;
and (iii) analyses of the results. In the context of this work, we shall detail only

90 P.H.S. Brito et al.

the verification of the iFTE elements. The verification of software architectures
with many iFTEs connected together is presented elsewhere [7,14].

After instantiating the formal models of the application, we have identified
approximately 25 scenarios for each one of the iFTE architectural elements.
These scenarios were used to guide the B-Method machine for verifying the
properties of interest using ProB. Regarding the software architecture, we have
identified approximately 1,000 scenarios, which are not the focus of this paper.

During the verification of the PumpController iFTComponent, the model
checker has detected a deadlock, caused by the non declaration of the
MethaneLevelSensorFailureException, as an exception that can be propagated.
One example of a violation of an exception propagation property was caused by
the absence of two handlers (required exceptions) in the MineralExtractorCon-
troller element.

The verification process took 14 seconds on average for each scenario, in an
Intel Pentium 4 computer with 512 MB of RAM, totalising approximately 41
minutes for the seven iFTE architectural elements. After fixing all modelling
faults, all properties were satisfied. The verification of the software architecture,
with all the elements connected together, took approximately 6 hours [7].

7.3 Test Cases Generation

After modelling the software architecture, we have used the B-Method machine
and the CSP specification of the software architecture for generating test cases
for iFTEs through the procedure described in Section 6.

Figure 7 presents the execution sequence graph for the controlPumping() ser-
vice of the PumpController connector. This graph represents only the external
exceptions (provided and required) of the iFTE for generating test cases for a
black-box testing. Analysing this graph, 22 paths are identified by a depth-first
search algorithm, producing 22 test cases.

One of the test cases simulates the MethaneHighPumpOnException throwing.
In this case, when the pump is turned on, the stub that simulates the get-
MethaneLevel() required service was prepared to return the highMethaneLevel. Af-
ter that, for safety reasons the controller tries to turn off the pump. The stub of the
turnOffPump() service was prepared to throw the PumpFailureException exception
when the service were called. Because it indicates an emergency exception, the con-
troller informs thiswarning to theMineralExtractorControllerconnector throughthe
MethaneHighPumpOnException. After executing this scenario, the test oracle has
to proceed the contract verification,which checks exception class type and context.

Besides the generation of test cases for unit testing activities, the proposed
approach also defines the right order for testing the various services of a com-
ponent. For example, because the Pump component is initially turned off, its
turnOnPump() service should be tested before the turnOffPump() one.

About the integration of the software architecture, it happened in four steps
and for that, we have developed four integration graphs, one for each step.
To exemplify the identification of integration test cases, for the interaction be-
tween the MineralExtractorController and the MineralExtractor elements, we have

Architecture-Centric Fault Tolerance with Exception Handling 91

getMethaneLevel()

controlPumping()

I_PC_PS

turnOffPump()

turnOnPump()

MethaneLevel
FailureException

PumpFailure
Exception

Normal
Return

I_PC_PE I_PC_RE I_PC_RS

[highMethaneLevel]

MethaneHigh
 PumpOn
 Exception

getWaterLevel()

[highWaterLevel]

[pump is turned off]

getWaterFlow()
WaterFlow

FailureException

WaterHigh
 Exception

[no flow detected]

WaterLow
Exception

[pump is turned on]

[pump is
turned off]

[lowMethaneLevel]

[flow detected]

[lowWaterLevel]

Fig. 7. Part of execution seuence graph for the controlPumping service

identified six test cases: three for the turnOnExtraction() service, and three for
the turnOffExtraction() service of the MineralExtractor component. Due to space
limitations, the interaction graph is not presented in this paper.

7.4 Case Study Evaluation

Above all, the case study has shown that the iFTE can be successfully used in the
specification of complex fault-tolerant systems. Simpler software architectures
can be obtained, first, by abstracting away from the actual system components,
and second, by enforcing a clear separation between the functionalities of the
application, and the exceptions and their respective handlers that are employed
for tolerating faults.

For specifying and verifying the architecture of the system, it was necessary
an effort of about 62.7 developers/hour. It was specified a total of eleven iFTE
elements, totalising eight B-Method machines (43 developers/hour) and a CSP
specification (19 developers/hour), and were spent about 0.7 hours operating
the scenarios tool and the ProB model checker.

During the verification of the software architecture, it was clear the rigorous
process has provided valuable information about the system properties, helping
to identify and correct specification faults of the architecture in earlier stages of
the software development. Although most of these problems are simple to correct,
failures to address them can result in problems that are harder to correct in later
phases of development.

For analysing the scalability of the proposed solution, we have compared it with
theAereal framework (seeSection2).After generating theAlloy [21] specificationof

92 P.H.S. Brito et al.

the case study using Aereal, we have verified exception propagation in the software
architecture using the Alloy Analyser [22] tool. However, with Aereal the verifica-
tion could not be completed due to lack ofmemory. With the approachpresented in
this paper, although it took long to verify in ProB, the task was successfully com-
pleted. We attribute the best scalability to the scenario-basedverification strategy,
which sufficiently reduces the state explosion during the model checking activity.

Some limitations of the case study were also identified. First, since all the
components were constructed during the case study, the assumptions about the
easiness for reusing components to construct dependable software systems was
not verified. Second, the proposed approach should be applied in a real case
study, where the reuse of software components occurs in a systematic way.

8 Conclusions and Future Work

This paper has presented an approach for formally representing and verifying the
idealised fault tolerant architectural element (iFTE), an architectural abstrac-
tion for structuring fault-tolerant systems, which is able to handle architectural
mismatches in the presence of software component failures. Although the case
study used for evaluating the overall approach was a snapshot of a real sys-
tem, we were able to demonstrate nevertheless that compared with other similar
approaches, this work supports an appropriate abstraction for modelling and
analysing fault-tolerant software architectures.

Since a limitation of the proposed solution is the lack of concurrency within
the architectural abstraction, as future work, we intend to deal with concurrent
systems, which have more complex exception handling strategies and resolu-
tion of exceptions. The Required component, which is the boundary between an
iFTE and its servers is the best place to plays this role. Besides that, because
the instantiation of the formal model is an error prone activity, tool support for
generating the formal models from a UML component diagram is still central to
our work. We also intend to improve the tool support for facilitating the gen-
eration of the formal models. The same information used for constructing the
sequence graphs of test cases generation can be used, for example, to automat-
ically generate a more complete source code, thus preventing the introduction
of faults. Finally, another line of research for a future work is to consider other
architectural abstractions for supporting other fault models, for example crash
failures.

References

1. Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York (1996)

2. Amnell, T., Behrmann, G., Bengtsson, J., D’Argenio, P.R., David, A., Fehnker, A.,
Hune, T., Jeannet, B., Larsen, K.G., Möller, M.O., Pettersson, P., Weise, C., Yi,
W.: Uppaal - Now, Next, and Future. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.
(eds.) MOVEP 2000. LNCS, vol. 2067, pp. 100–125. Springer, Heidelberg (2001)

Architecture-Centric Fault Tolerance with Exception Handling 93

3. Anderson, T., Lee, P.A.: Fault Tolerance: Principles and Practice. Prentice-Hall,
Englewood Cliffs (1981)

4. Bass, L., Clements, P.C., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Reading (2003)

5. Bertolino, A., Marchetti, E., Muccini, H.: Introducing a reasonably complete and
coherent approach for model-based testing. Electr. Notes Theor. Comput. Sci. 116,
85–97 (2005)

6. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (1999)

7. Brito, P.H.S., de Lemos, R., Martins, E., Rubira, C.M.F.: Verification and valida-
tion of a fault-tolerant architectural abstraction. In: DSN Workshop on Architect-
ing Dependable Systems (WADS 2007), Edinburgh, Scotland - UK (Accepted for
publication, 2007)

8. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

9. Castor Filho, F., Cacho, N., Figueiredo, E., Ferreira, R., Garcia, A., Rubira,
C.M.F.: Exceptions and aspects: The devil is in the details. In: Proceedings of
the 14th ACM SIGSOFT FSE, pp. 152–162 (November 2006)

10. Castor Filho, F., da Silva Brito, P.H., Rubira, C.M.F.: Specification of exception
flow in software architectures. Journal of Systems and Software (October 2006)

11. Castor Filho, F., de Castro Guerra, P.A., Rubira, C.M.F.: An architectural-level
exception-handling system for component-based applications. In: de Lemos, R.,
Weber, T.S., Camargo Jr., J.B. (eds.) LADC 2003. LNCS, vol. 2847, pp. 321–340.
Springer, Heidelberg (2003)

12. Clements, P., et al.: Documenting Software Architectures: Views and Beyond.
Addison-Wesley, Reading (2003)

13. Cristian, F.: Exception handling. In: Dependability of Resilient Computers, pp.
68–97. Blackwell (1989)

14. da Silva Brito, P.H., de Lemos, R., Filho, F.C., Rubira, C.M.F.: Architecture-
centric fault tolerance with exception handling. Technical Report IC-07-04. State
University of Campinas (February 2007)

15. Brito, P.H.S., Rocha, C.R., Castor Filho, F., Martins, E., Rubira, C.M.F.: A
method for modeling and testing exceptions in component-based software develop-
ment. In: Maziero, C.A., Silva, J.G., Andrade, A.M.S., Assis Silva, F.M.d. (eds.)
LADC 2005. LNCS, vol. 3747, pp. 61–79. Springer, Heidelberg (2005)

16. de Castro Guerra, P.A., Rubira, C., de Lemos, R.: A fault-tolerant software archi-
tecture for component-based systems. In: de Lemos, R., Gacek, C., Romanovsky, A.
(eds.) Architecting Dependable Systems. LNCS, vol. 2677, pp. 129–149. Springer,
Heidelberg (2003)

17. de Lemos, R., de Castro Guerra, P.A., Rubira, C.M.F.: A fault-tolerant architec-
tural approach for dependable system. IEEE Software 23(2), 80–87 (2006)

18. McMillan, K.L.: The SMV system. Technical Report CMU-CS-92-131, Carnegie
Mellon University (1992)

19. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco (1993)

20. Issarny, V., Banatre, J.P.: Architecture-based exception handling. In: Proceedings
of the 34th Annual Hawaii International Conference on System Sciences (2001)

21. Jackson, D.: Alloy: a lightweight object modelling notation. Software Engineering
and Methodology 11(2), 256–290 (2002)

94 P.H.S. Brito et al.

22. Jackson, D., Schechter, I., Shlyahter, H.: Alcoa: the alloy constraint analyzer. In:
ICSE ’00: Proceedings of the 22nd international conference on Software engineer-
ing, pp. 730–733. ACM Press, New York (2000)

23. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. In: Dependable
computing and fault-tolerant systems, 2nd edn., Springer, Berlin, New York (1990)

24. Leuschel, M., Butler, M.J.: Prob: A model checker for b. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

25. Parnas, D.L., Würges, H.: Response to undesired events in software systems. In:
Proceedings of the 2nd International Conference on Software Engineering, San
Francisco, USA, pp. 437–446 (October 1976)

26. Randell, B.: System structure for software fault tolerance. IEEE Transactions on
Software Engineering 1(2), 221–232 (1975)

27. Reimer, D., Srinivasan, H.: Analyzing exception usage in large java applications.
In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg (2003)

28. Schneider, S., Treharne, H.: Communicating b machines. In: Bert, D., Bowen, J.P.,
Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp.
416–435. Springer, Heidelberg (2002)

29. Sloman, M., Kramer, J.: Distributed systems and computer networks. Prentice Hall
International (UK) Ltd, Hertfordshire, UK (1987)

30. Taylor, R.N., Medvidovic, N., Anderson, K., Whitehead, J.E.J., Robbins, J.: A
component- and message- based architectural style for GUI software. In: Proceed-
ings of the 17th International Conference on Software Engineering, pp. 295–304
(April 1995)

31. Weimer, W., Necula, G.: Finding and preventing run-time error handling mistakes.
In: Proceedings of OOPSLA’2004, Vancouver, Canada, pp. 419–433 (October 2004)

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 95–110, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Coverage-Oriented, Prioritized Testing –
A Fuzzy Clustering Approach and Case Study

Fevzi Belli1, Mubariz Eminov2, and Nida Gökçe2,3

1 Department of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Germany

belli@upb.de
2 Faculty of Arts and Sciences, Department of Statistics, Mugla University, Turkey

{gnida,meminov}@mu.edu.tr
3 on leave at the Department of Computer Science, Electrical Engineering and Mathematics,

University of Paderborn, Germany

Abstract. Existing test techniques focus on particular, relevant aspects of the
requirements of the system under test (SUT). Real-life SUTs have, however,
numerous features to simultaneously be considered, often leading to a large
number of tests. In such cases, because of time and cost constraints the entire
set of tests cannot be run. It is then essential to prioritize the tests in sense of a
ordering of the relevant events entailed in accordance with the importance of
their numerous features. This paper proposes a graph-model-based approach to
prioritizing the test process. Tests are ranked according to their preference de-
grees which are determined indirectly, i.e., through classifying the events. To
construct the groups of events, Fuzzy c-Means (FCM) clustering algorithm is
used. A case study demonstrates and validates the approach. Contrary to other
approaches, no prior information is needed about the tests carried out before,
e.g., as is case in regression testing.

Keywords: Software Testing, Test Prioritizing, Fuzzy Clustering.

1 Introduction: Motivation and Related Work

Testing is one of the important, traditional analytical techniques of quality assurance
in the software industry. There is no justification, however, for any assessment of the
correctness of software under test (SUT) based on the success (or failure) of a single
test, because potentially there can be an infinite number of test cases. To overcome
this principle shortcoming of testing concerning completeness of the validation,
formal methods have been proposed. Those methods use models to visualize the rele-
vant, desirable features of the SUT. The modeled features are either functional be-
havior or structural issues of the SUT, leading to specification-oriented testing or
implementation-oriented testing, respectively. Once the model is established, it
“guides” the test process to generate and select test cases, which form sets of
test cases (also called test suites). The test selection is ruled by an adequacy criterion,
which provides a measure of how effective a given set of test cases is in terms of
its potential to reveal faults [1, 16]. Some of the existing adequacy criteria are

96 F. Belli, M. Eminov, and N. Gökçe

coverage-oriented. They use the ratio of the portion of the specification or code that is
covered by the given test set in relation to the uncovered portion in order to determine
the point in time at which to stop testing (test termination problem).

The test approach introduced in this paper is specification - and coverage - ori-
ented. The underlying model graphically represents the system behavior interacting
with the user’s actions. In this context, event sequence graphs (ESG, [5-7]) are fa-
vored. ESG approach view the system’s behavior and user’s actions as events, more
precisely, as desirable events if they are in accordance with the user expectations, oth-
erwise they are undesirable. Mathematically speaking, a complementary view of the
behavioral model is generated from the model given which explains the advantage of
the ESG approach: The model will be exploited twice, i.e., once to validate the system
behavior under regular conditions and a second time to test its robustness under ir-
regular, unexpected conditions.

The costs of testing often tend to run out the limits of the test budget. In those
cases, the tester may request a complete test suite and attempt to run as many tests as
affordable, without running out the budget. Therefore, it is important to test the most
important items first. This leads to the Test Case Prioritization Problem a formal
definition of which is represented in [3] as follows:

Given: A test suite T;
The set PT of permutations of T;
A function f from PT to the real numbers which represents the preference
of the tester while testing.

Problem: Find T’∈PT such that (∀ T”) (T” ≠ T’) [f(T’) ≥ f(T”)]

Existing approaches to solving this problem usually suggest constructing a density
covering array in which all pair-wise interactions are covered [2, 3]. Generally speak-
ing, every n-tuple is then qualified by a number n∈ N (N : set of natural numbers)
of values to each of which a degree of importance is assigned. In order to capture sig-
nificant interactions among pairs of choices the importance of pairs is defined as the
“benefit” of the tests. Every pair covered by the test contributes to the total benefit of
a test suite by its individual benefit. Therefore, the tests given by a test suite are to be
ordered according to the importance of corresponding pairs. However, such interac-
tion-based, prioritized algorithms are computationally complex and thus mostly less
effective [18, 19].

The ESG approach we favor in this paper generates test suites through a finite se-
quence of discrete events. The underlying optimization problem is a generalization of
the Chinese Postman Problem (CPP) [8] and algorithms given in [5-7] differ from the
well-known ones in that they satisfy not only the constraint that a minimum total
length of test sequences is required, but also fulfill the coverage criterion with respect
to converging of all event pairs represented graphically. This is substantial to solve the
test termination problem and makes out a significant difference of this present paper
from existing approaches. To overcome the problem that an exhaustive testing might
be infeasible, the paper develops a prioritized version of the mentioned test generation
and optimization algorithms, in sense of “divide and conquer” principle. This is the
primary objective and the kernel of this paper which is novel and thus, to our knowl-
edge, has not yet been worked out in previous work, including ours [5-7, 15].

Coverage-Oriented, Prioritized Testing –A Fuzzy Clustering Approach and Case Study 97

The required prioritization has to schedule the test process, i.e., to meet the needs
and preferences of test management how to spend the test budget. However, SUT and
software objects, i.e., components, architecture, etc., usually have a great variety of
features. Therefore, test prioritization entails the determination of order relation(s) for
these features. Generally speaking, we have n objects, whereby each object has a
number (p) of features that we call dimension. Test prioritization problem then repre-
sents the comparison of test objects with different, multiple dimensions. This is the
further, important feature which differs the optimization approach presented in this
paper, i.e., none of the existing approaches take the fact into account that SUT usually
has a set of attributes and not a single one when prioritizing the test process. This is a
tough, np-complete problem to solve in general.

The testing capacity of the algorithm developed in this paper is of less complexity
than the ones known from literature and provides the ordering of the implementation
of the tests to be run. To be more specific, to each of the tests generated a degree of its
preference is assigned. This degree is indirectly determined through estimation of the
events qualified by several attributes. These attributes depend on the features of the
project and their values are justified by their significance to the user. We give some
examples how to define such attributes and assign values to them, based on the ESG
representation of corresponding events. We suggest to represent those events as an
unstructured multidimensional data set and to divide them into groups which
correspond to their importance. Beforehand, the optimal number of groups of events
should be determined, in advance. For this aim, we use criterion Vsv based cluster
validity algorithm [13, 14]. To derive the groups of events, Fuzzy c-Means (FCM)
clustering algorithm is employed [12].

A last, but not least feature of the approach represented here is no prior information
is needed about the tests carried out before, e.g., as is case in regression testing.

The paper is organized as follows. Section 2 explains the background of the ap-
proach, presenting also the definition of FCM to partition a data set into the different
groups. Section 3 describes the proposed prioritized graph-based testing approach.
Section 4 includes the case study. Section 5 summarizes the results, gives hints to
further research and concludes the paper.

2 Modeling and Clustering

2.1 Event Sequence Graphs for Test Generation

Because the previous papers of the first author ([5-7, 15]) sufficiently explain the con-
struction of ESG, test generation from ESGs, and test process optimization, only a
brief introduction into ESG concept is given that is necessary and sufficient to under-
stand the test prioritization approach represented in this paper.

Basically, an event is an externally observable phenomenon, such as an environ-
mental or a user stimulus, or a system response, punctuating different stages of the
system activity. A simple example of an ESG is given in Fig1. Mathematically, an
ESG is a directed, labeled graph and may be thought of as an ordered pair

(,)ESG Eα= , where α is a finite set of nodes (vertices) uniquely labeled by some

input symbols of the alphabet Σ, denoting events, and E: α α, a precedence relation,

98 F. Belli, M. Eminov, and N. Gökçe

possibly empty, on α. The elements of E represent directed arcs (edges) between the
nodes in α. Given two nodes a and b in α, a directed arc ab from a to b signifies that
event b can follow event a, defining an event pair (EP) ab (Fig. 1). The remaining
pairs given by the alphabet Σ, but not in the ESG, form the set of faulty event pairs
(FEP), e.g., ba.

As a convention, a dedicated, start vertex e.g., [, is the entry of the ESG whereas a
final vertex e.g.,] represents the exit. These pseudo vertices are not included in Σ;
therefore, the arcs from and to them form neither EP nor FEP; they are pseudo arcs.

The set of FEPs constitutes the complement of the given ESG (ESG in Fig 1).

Fig.1. An event sequence graph ESG and ESG as the complement of the given ESG

Because the construction of ESG, test generation from ESG and ESG , and test
process optimization are sufficiently explained in the literature ([5-7, 15]), the present
paper summarizes ESG concept and are informally introduces some definitions, as far
as they are necessary and sufficient to understand the test prioritization approach rep-
resented in this paper.

A sequence of n+ 1 consecutive events that represents the sequence of n arcs is
called an event sequence (ES) of the length n+1, e.g., an EP (event pair) is an ES of
length 2. An ES is complete if it starts at the initial state of the ESG and ends at the fi-
nal event; in this case it is called a complete ES (CES). Occasionally, we call CES
also walks (or paths) through the ESG given. Accordingly, a faulty event sequence
(FES) of the length n consists of n-1 subsequent events that form an ES of length n-2
plus a concluding, subsequent FEP. An FES is complete if it starts at the initial state
of the ESG; in this case it is called faulty complete ES, abbreviated as FCES. A FCES
must not necessarily end at the final event.

2.2 Fuzzy Cluster Analysis

Fuzzy cluster analysis is used for partitioning a given set of data or objects into clus-
ters (subsets, group, and classes). This partition should be homogeneous within clus-
ters and heterogeneous between clusters [21]. Since only crisp measurements are
used, data would be vectors of real numbers, forming a set of objects X = (x1, x2, ...
xp)∈Rp. The Euclidean distance between data is used as a measure of the dis-
similarity.

The set of objects X is partitioned into c fuzzy clusters. Non-exclusive fuzzy clus-
ters are dealt as a fuzzy subset of the objects, i.e., the partition of a set of n objects
(patterns) into c clusters 1≤ i ≤ c is represented by a n×c matrix U (or uik, where uik ∈

Coverage-Oriented, Prioritized Testing –A Fuzzy Clustering Approach and Case Study 99

[0,1] is the membership degree of datum xk to cluster i, see [20]). This partition is re-
ferred to as c-means fuzzy (probabilistic) clustering with following feature:

ou
n

ık

ik >∑
=

 for all i ∈ {1,...,c},

∑
=

=
c

i

iku
1

1 for all k ∈ {1,...,n}

(1)

Fuzzy c-means algorithm (FCM) as a fuzzy version of hard c-means as introduced
in [9] and improved by “fuzzifier m” in [10]. FCM recognizes spherical clouds of
points (datum) in p-dimensional space. Each cluster here is represented by its centre,
called a prototype, as a representative of data assigned to the cluster.

Main issue in the fuzzy cluster analysis is to obtain the optimal assignment of data
to clusters, in other words, the choice of the optimal prototypes for data given. This is
usually carried out by means of the cluster algorithm for minimizing the objective
function [22, 23]:

J (X, U, V) = ∑
=

c

i 1
∑

=

n

k

iku
1

)(md2 (νi, x k) (2)

provided that no cluster is completely empty. Let X be the data with X= {x1, x2,... xn}
∈ Rp , c be the number of fuzzy clusters, uik ∈ [0,1] is membership degree of datum xk

to cluster i, νI ∈ Rp be the prototype for cluster I, and d (νi, xk) be the Euclidian dis-
tance between prototype νi and datum xk. The parameter 1 < m is called fuzziness in-
dex which is usually chosen m = 2.

The quadratic distance of the data to the prototypes dik = || xk - νi ||, weighted with
their membership degrees, is used for minimizing (2). The prototypes of the cluster
centers νi, are calculated as, with the condition to have a local minimum.

1

1

()

()

n
m

ik k
k

i n
m

ik
k

u x
v

u

=

=

=
∑

∑
 (3)

After randomly initialization of the partition matrix (uik), the prototypes νi and new
matrix (uik) are updated according to (3) at each optimization step as follows [11]:

2 2 2 /(1)

1

1

((,) / (,))
ik c

m
i k j k

j

u
d v x d v x −

=

=
∑

(4)

This procedure is iterated until successive approximation || v (t-1) – v(t)|| ≤ ε is
satisfied.

100 F. Belli, M. Eminov, and N. Gökçe

If the number of clusters (hence the number of classes) is not known in advance,
the key problem is to determine the optimal number of clusters (unsupervised classifi-
cation). In this case, for each c ∈ {2,3,..cmax}, the fuzzy cluster analysis has to find an
optimal partition of data with respect to the new corresponding objective function ac-
cording to (2) which is regarded as a validity function because it decreases by in-
creasing c. The present approach uses the Vsv index-based cluster validity algorithm
[14] for determining the optimal number c of groups in following steps:

Step 1. Initialize U=[uij] matrix, U(0)
Step 2. Calculate the centers vectors V(k)=[vj] by (3)
Step 3. Update U(t) , U(t+1) by (4)
Step 4. If || U(t+1) - U(t)||<ε then Stop; otherwise return to Step 2.

Classification. After applying FCM algorithm, each data point belongs to all clusters
with different membership degree, however, a unique assignment of data points is re-
quired for solving classification problem. A data point will be assigned to the cluster
for which its membership value is maximal. This process is called defuzzification
applying of which for all data points a class (group) Si is constructed by following
equation:

 { }, 1, ...,S x u u i j i ci k ik jk= > ≠ = (5)

Therefore, the fuzzy qualified groups Si, i =1,..,c of events xk, k=1,…,n, are ob-
tained within which membership value of kth event will be

 { }() sup 1, ..., ; 1, ...,x u i c k nS k iki
μ = = = (6)

To estimate groups on their importance degree, the length of center vectors v1,v2 ,
vc are used that is based on the rule: the greater the value of attributes the more im-
portant the group.

Computational time for classification of events increases with the number n of the
events and the number p of their attributes.

3 Prioritized ESG-Based Testing

Our approach is model-based; for test generation a set of ESGs are constructed which
represent a discrete model of SUT. Those ESGs constitute the input to the test algo-
rithms introduced in [5, 7] which use following coverage criteria for generating tests
for the given set of ESG. In case other models are available, e.g., statecharts, which
might have been produced in early stages of the software development process, they
can be used accordingly to generate test cases as known from the literature. Thus, our
test prioritization approach is applicable to any formal test generation technique. Fol-
lowing, we demonstrate our approach using ESG concept.

a) Cover all event pairs in the ESG.

b) Cover all faulty event pairs derived by the ESG .

Coverage-Oriented, Prioritized Testing –A Fuzzy Clustering Approach and Case Study 101

Note that a test suite which satisfies the first criterion consists of CESs while a test
suite which satisfies the second consists of FCESs. These algorithms are able to pro-
vide the following constraints:

a) The sum of the lengths of the generated CESs should be minimal.
b) The sum of the lengths of the generated FCESs should be minimal.

The constraints on total lengths of the tests generated enable a considerable reduc-
tion in the cost of the test execution and thus the algorithms mentioned above can be
referred to as the relatively efficient ones. However, as stated in Section 1 (Introduc-
tion), an entire test suite generated may not be executed due to limited project budget.
Such circumstances entail ordering all tests to be checked and exercised as far as they
do not exceed the test budget. To solve the test prioritizing problem, several algo-
rithms have been introduced [1, 2]. Usually, during the test process for each n-tuple
(in particular pair-wise) interaction a degree of importance is computationally deter-
mined and assigned to the corresponding test case. However, this kind of prioritized
testing is computationally complex and hence restricted to deal with short test cases
only. Our prioritized testing approach is based on the ESG-based testing algorithms
mentioned above.

Note that our test suite consists of CESs which starts at the entry of the ESG and
end of its exit, representing walks (paths) through the ESG under consideration. This
assumption enables to order the generated tests, i.e., CESs. Test suites considered here
consist of CESs which starts at the entry of the ESG and end of its exit, representing
walks (paths) through the ESG. This assumption enables to order the generated tests,

i.e., CESs. Test suites that cover ESG consists of FCESs are handled accordingly.
The ordering of the CESs is in accordance with their importance degree which is

defined indirectly i.e., by estimation of events that are the nodes of ESG and represent
objects (modules, components) of SUT. For this aim, firstly events are presented as a

multidimensional event vector (, ...,)1ix x x p= where p is the number of attributes.

Then, a data set { },...,1
p

X x xn= ⊂ R is constructed where n is the number of events,

which being an unstructured one is divided into c groups The optimal number of
groups are determined in advance by using the cluster validity algorithm, as described
in [13,14]. The groups are constructed by using FCM clustering algorithm and then
classification procedure as explained in the previous section 2.2. Afterwards, these
groups are ordered on the importance degree according to length of their correspond-
ing center vector. Finally, the CESs are ordered, scaling their preference degrees
based on the events which incorporate the importance group(s). We assume that the
behavior of the SUT is correctly specified, i.e., only CESs constructed are analyzed.
Additionally, we deal with minimal length of the ES to be covered, i.e., pair-wise cov-
erage is the termination criterion.

Importance (Imp(e)) of kth event in depending on importance degree of the group is
defined as follows:

 Imp() ImpD() 1kx c Si= − + (7)

102 F. Belli, M. Eminov, and N. Gökçe

where c is the optimal number of the groups; ImpD(Si) is defined by means of the

importance degree of the group iS the kth event belongs to.

Finally, choosing the events with their degree of membership from the ordered
groups, a ranking of CESs (walks) is formed according to their descending preference
degrees beginning from maximal one. The assignment of preference degrees to CESs
is based on the rule that is given as follows:

a) The CES under consideration has the highest degree if it contains the events
which belong to the “top” group(s) with utmost importance degrees, i.e., that is
placed within the highest part of group ordering.

b) The CES under consideration has the lowest degree if it contains the events
which belong to the group(s) that are within the lowest part of the “bottom”
group(s) with least importance degree i.e., that is placed within the lowest part of
group ordering.

Therefore, the preference degree of CES can be defined by taking into account
both the importance of events (see 7) and the frequency of occurrence of event(s)
within them that is formulated as follows:

 k si

n
PrefD(CES)= Imp(x) () f ()q q

k=1 k kx xμ∑ 1,.., 1,..., ,i c q r i q= = ∈N (8)

where r is the number of CESs, Imp(xk) is importance degree of the kth event (see (7)),

()ksi
xμ is membership degree of the kth event belonging to the group iS , and fq(xk)

is frequency of occurrence of event kth within CEq.

Indirect Determination of the Preference:

Step 1. Construction of a set of events { }X xij= where 1, ...,i n= ; i ∈ N is an

event index, and 1, ...,j p= ; j ∈ N is an attribute index.

Step 2. Clustering the events using FCM algorithm (see Section 2.2).
Step 3. Classification of the events into fuzzy qualified c groups (Section 2.2).
Step 4. Determination of importance degrees of groups according to length () of

center vectors,
Step 5.Determination of importance degrees of event in groups (see (7), this

section)
Step 6. An ordering of the CESs for prioritizing the test process.

This order determines the preference degree (PrefD(CESq)) of CESs as test cases
(see (8), in present section).

Example for Qualifying and Quantifying the Attributes: To exemplify the ap-
proach for qualifying an event corresponding to a node in ESG, we introduce nine at-
tributes (p=9) that determine the dimension of a data point represented in a data set.

Coverage-Oriented, Prioritized Testing –A Fuzzy Clustering Approach and Case Study 103

x1: The number of FEPs connected to the node under consideration (takes the number
of all potential faulty events entailed by the event given into account).

x2 :The number of nodes (events) which are directly and indirectly reachable from an
event except entry and exit (indicates its “traffic” significance).

x3 :The averaged frequencies of the usage of event (Avrf(x)) within the CESs (deter-
mines the averaged occurrence of each event within all CESs). This attribute is
formulated as follows:

r f ()1 q

1,..., 1,...,k ()q=1
Avrf(x) =

xk q r k n
d l CESq

⎛ ⎞
⎜ ⎟ = ∈ = ∈∑⎜ ⎟
⎝ ⎠

N N d ∈ N (9)

where fq(xk) is frequency of occurrence of event kth within CESq and)(l CESq is

length of qth CESq, d is determined that events belonging to number of CESs as
d r≤ .

x4 : The balancing degree determines balancing a node as the sum of all incoming
edges (as plus (+)) and outgoing edges (as minus (-)) for a given node.

x5 : The number of incoming and outgoing edges (invokes usage density of a node,
i.e., an event).

x6: The number of nodes (events) of a sub-node as sub-menus that can be reached
from this node (maximum number of sub-functions that can be invoked further).

x7 : The total number of occurrences of an event (a node) within all CESs, i.e., walks
(significance of an event).

x8 : The maximum number of nodes to the entry [(its maximum distance in terms of
events to the entry).

x9 : The number of sub-windows to reach an event from the entry [(gives its distance
to the beginning).

The attributes x1 to x9 listed above are arbitrarily chosen examples. Any user (i.e.,
tester) can extend, or reduce the list, in accordance with his or her preferences.

4 A Case Study

Based on the web-based system ISELTA (Isik‘s System for Enterprise-Level Web-
Centric Tourist Applications), we now present a case study to validate the testing ap-
proach presented in the previous sections [15].

Both the construction of ESGs and generation of test cases from have been ex-
plained in the previous papers of the first author [5-7]. Therefore, the case study,
which has not been published anywhere, concentrates on test prioritizing problem.

ISELTA has been developed by our group in cooperation with a commercial enter-
prise to market various tourist services for traveling, recreation and vacation. It can be
used by hotel owners, travel agents, etc., but also by end consumers. A screenshot in
Figure 2 demonstrates the process of definition and reservation of rooms of different

104 F. Belli, M. Eminov, and N. Gökçe

F
ig

. 2
. R

oo
m

 d
ef

in
it

io
n/

re
se

rv
at

io
n

pr
oc

es
s

in
 I

S
E

L
T

A
an

d
E

S
G

 o
f

th
is

 s
ys

te
m

Coverage-Oriented, Prioritized Testing –A Fuzzy Clustering Approach and Case Study 105

Fig. 3. ESG of Room definition/reservation process in ISELTA

types. The bottom part of the screenshot defines different types of rooms, e.g., double
room, single room, etc. and their features, e.g., air condition, kitchenette, etc. The top
portion (in this example: two lines at the top, the second of which is highlighted) dis-
plays the status and steps of the working process. As an example, the first line
summarizes the situation that a double room has already been selected for two adults
with no (0, zero) children. The high-lighted, second line represents the ongoing
booking process: A single room for one person has just been selected. In any case, a
minimum of one person is required to continue the process.

ESG of the ISELTA Application and its Complement: Fig.3 depicts the ESG of
the scenario described room definition/reservation process in ISELTA. The
complement of this ESG is given in Fig.4.

The identifiers of the nodes of the Fig.3 and Fig.4 are abbreviated by numbers;
these numbers and their meanings are given in the following list.

Legend of the Fig.3 and 4 (the inscriptions of the nodes, in order of their numbering)

 1: Click on “Starting”
 2: Click on “Registering”
 3: Registering carried out
 4: Click on “log in”
 5: Logged in
 6: Click on “Pass word forgotten”

 7: Pass word forgotten
 8: Click on “Request”
 9: Indicate service(s) offered
10: Indicate administrator
11: Indicate agent

106 F. Belli, M. Eminov, and N. Gökçe

Fig. 4. ESG as the complement of ESG of Fig.3.

Derivation of the Test Cases: Test cases can now be generated using the algorithms
mentioned in Section 3 and described in [6, 7] in detail. For the lack of space, refer-
ence is made to these papers and the CESs generated are listed below:

Table 1. List of CESs

CES1 CES2 CES3 CES4 CES5

[4 5 4 5 9 1 4 5 10 1 4
5 11 1 4 5 9 2 3 4 5
10 2 3 2 3 1 4 5 11 2
3 4 6 4 6 7 8 1 2 3]

[1 4 5 9] [2 3 4 6 7 8
2 3 4 5 10]

[4 5 11] [4 6 7 8]

Determination of Attributes of Events: As a follow-on step, each event, i.e., the
corresponding node in the ESG, is represented as a multidimensional data point using
the values of all nine attributes as defined in the previous section. Estimating by

means of the ESG and ESG , the values of attributes for all events are determined and
the data set is constructed as follows in Table 2.

Coverage-Oriented, Prioritized Testing –A Fuzzy Clustering Approach and Case Study 107

Construction of the Groups of Events: For the data set gained from the case study
(Fig.2,3), the optimal number c of the groups is determined to be 5 which leads to the
groups Si, i=1,…,5. Importance degrees (ImpD(Si)) of obtained groups are determined
by comparing the length of their center vectors (), and all ImpD(Si) values that are
presented in Table 3.

Table 2. Data set of events

Event
No &

Attributes
1 2 3 4 5 6 7 8 9 10 11

x1 8 9 11 7 9 7 9 10 9 9 9
x2 10 10 10 10 10 10 10 10 10 10 10
x3 0,19 0,15 0,15 0,25 0,21 0,22 0,12 0,12 0,15 0,07 0,19
x4 4 6 -3 3 -3 -1 0 -2 -2 -2 -2
x5 8 8 5 7 5 3 2 4 4 4 4
x6 0 0 6 0 0 0 0 0 30 0 0
x7 6 7 7 14 10 4 3 3 3 3 3
x8 39 40 41 35 29 36 37 38 17 22 30
x9 1 1 2 1 2 2 3 4 3 3 3

Table 3. Obtained groups of events

Groups

No
Importance

Degrees
Events

Membership
Degrees

Length of
Center
Vectors
()

S1 1 8 0,9948 3,4112

S2 3
3
5

0,3036
0,9589

1,896

S3 4
6
7

11

0,4896
0,5728
0,6769

1,4313

S4 2
1
2
4

0,9414
0,8781
0,4056

3,132

S5 5
9

10
0,7918
0,8297

0,8819

Indirect Determination of the Preference Degrees: As mentioned in the previous
section, the preference degree of the CESs is determined indirectly by (7) that de-
pends on the importance degree of the event (see (8)), membership degree of the kth

event belonging to the group iS and frequency of event(s) within CES. The ranking

of the CESs (walks) is represented in Table 4.

108 F. Belli, M. Eminov, and N. Gökçe

Exercising the test cases (CESs, or walks) in this order ensure that the most impor-
tant tests will be carried out first. In the case when the test budget is exhausted before
all tests are done, i.e., after the performance of the CES3, the tester can be sure that the
tests performed up to that test CES3 are more significant than the remaining ones, i.e.,
CES4 and CES5, subject to the attributes x1 to x9.

Table 4. Ranking of CESs (walks)

Preference CESs

Degree
PrefD(CESq)

(8)
No Walks

1 11,1183 CES1

[4 5 4 5 9 1 4 5 10 1 4 5 11
1 4 5 9 2 3 4 5 10 2 3 2 3 1
4 5 11 2 3 4 6 4 6 7 8 1 2 3]

2 8,0061 CES3 [2 3 4 6 7 8 2 3 4 5 10]
3 1,9504 CES5 [4 6 7 8]
4 0,7894 CES2 [1 4 5 9]
5 0,7251 CES4 [4 5 11]

Moreover, the achieved ranking of CESs complies with the tester’s view. Thus, an
ordering of the complete set of CESs (walks) is determined using the test suite gener-
ated by the test process, i.e., we now have a ranking of test cases to make the decision
which test cases are to be primarily tested.

Undesirable events can be handled in a similar way; therefore, we skip the con-
struction of ranking of the FCES.

5 Conclusions and Future Work

Graph-based testing algorithms are popular to generate software test suites to fulfill
various criteria, e.g., concerning minimal total length of the test sequences required
for a complete coverage to minimize test costs. In this paper, test capacity of these al-
gorithms is improved by prioritizing the test process.

The model-based, coverage-and specification-oriented approach described in this
paper provides a novel and effective algorithm for ordering the test cases according to
their degree of preference. Such degrees are determined indirectly through the use of
the events specified by several attributes, and not a single one. Furthermore, no prior
knowledge about the tests carried out before is needed. Those are important issues
and consequently, the approach introduced radically differs from the existing ones.

The relevant attributes are visualized by means of graphical representation (here,
given as a set of both ESGs, their complements (FESGs), and complemented ESGs
(CESGs)). The events (nodes of ESG) are classified by using FCM clustering
algorithm and applying defuzzification procedure. The approach is useful when an
ordering of the tests due to restricted budget and time is required. Run-time com-
plexity of this approach is of o(n2), assuming that the number of events (n) greater
than the number of attributes (p), otherwise it is o(p2).

Coverage-Oriented, Prioritized Testing –A Fuzzy Clustering Approach and Case Study 109

The deployment of ESGs is not strictly necessary to apply our prioritizing ap-
proach. We used here this event-based modeling because we observed that event-
based thinking is often favored by testers in industrial practice: They wish to reach a
desirable event, or exclude that an undesirable one occurs, or v.v.

We plan to apply our prioritization approach to a more general class of testing
problems, e.g., to multiple-metrics-based testing where a family of software measures
is used to generate tests [17]. Generally speaking, the approach can be applied to pri-
oritize the testing process if the SUT is modeled by a graph the nodes of which repre-
sent events or sub-systems of various granularities (modules and functions, or objects,
methods, classes, packages, etc.).

Next work planned is to extend the approach to cases where n-tuple events cover-
age (with n=3, 4, …) is required instead of the pair-wise one (n=2) as studied in this
paper. Additionally, the fuzzy-event-based prioritized testing will be considered as an
alternative the ordinary-event-based one with the usage of fuzzy clustering and
classification procedure presented in present paper and then will be compared their
prioritizing performance. Finally, more applications and case studies are planned to
also empirically validate and to extend the results achieved in this paper formally.

References

1. Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley, Reading (2000)
2. Bryce, R.C., Colbourn, Ch.C.: Prioritized Interaction Testing for Pair-wise Coverage with

Seeding and Constraints. Information and Software Technolog 48, 960–970 (2006)
3. Elbaum, S., Malishevsky, A., Rothermel, G.: Test Case Prioritization: A Family of

Empirical Studies. IEEE Transactions on Software Engineering 28(2), 182–191 (2002)
4. Cohen, D.M., Dalal, S.R., Freedman, M.L., Patton, G.C.: The AETG System: An

Approach to Testing Based on Combinatorial Design. IEEE Trans. Software
Engineering 23(7), 437–444 (1997)

5. Belli, F.: Finite-State Testing and analysis of Graphical User Interfaces. In: Proc. 12th
Int’l. Symp. Softw. Reliability Eng (ISSRE’01), p. 43 (2001)

6. Belli, F., Budnik, C.J., White, L.: Event-Based Modeling, Analysis and Testing of User
Interactions - Approach and Case Study. J. Software Testing, Verification &
Reliability 16(1), 3–32 (2006)

7. Belli, F., Budnik, F.C.J.: Test Minimization for Human-Computer Interaction. J. Applied
Intelligence 7(2) (2007) (to appear)

8. Edmonds, J., Johnson, E.L.: Matching: Euler Tours and the Chinese Postman, Math.
Programming, pp. 88-124 (1973)

9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York (1981)

10. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact
Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)

11. Eminov, M.: Rule-Based Fuzzy Classification Using Query Processing. Int. J.
Mathematical & Computational Applications (2003)

12. Eminov, M., Gokce, N.: Neural Network Clustering Using Competitive Learning
Algorithm, Proc. TAINN 2005. In: Savacı, F.A. (ed.) TAINN 2005. LNCS (LNAI),
vol. 3949, pp. 161–168. Springer, Heidelberg (2006)

110 F. Belli, M. Eminov, and N. Gökçe

13. Eminov, M.E.: Fuzzy c-Means Based Adaptive Neural Network Clustering. Proc. TAINN-
2003, Int. J. Computational Intelligence, 338-343 (2003)

14. Kim, D.J., Park, Y.W., Park, D.J.: A Novel Validity Index for Clusters. IEICE Trans. Inf.
& System, 282–285 (2001)

15. Belli, F., Budnik, Ch.J., Linschulte, M., Schieferdecker, I.: Testing Web-Based Systems
with Structured, Graphic Models - Comparison through a Case Study (in German). In:
Proc. Annual German National Conf. for Informatics, GI-Jahrestagung, 2006 (to appear)

16. Gerhart, S., Goodenough, J.B.: Toward a Theory of Test Data Selection. IEEE Trans. On
Softw. Eng., 156–173 (1975)

17. Neate, B., Warwick, I., Churcher, N.: CodeRank: A New Family of Software Metrics. In:
Proc. Australian Software Engineering Conference - ASWEC 2006, pp. 369–377. IEEE
Comp. Press, Los Alamitos (2006)

18. Jeffrey, D., Gu, N.: Test Case Prioritization Using Relevant Slices. ICSE (2002)
19. Kim, J.-M., Porter, A.: A History-Based Test Prioritization Technique for Regression

Testing in Resource Constrained Environments, COMPSAC (2006)
20. Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for

Pattern Recognition and Image Processing. Kluwer Academic Publishers, Dordrecht
(1999)

21. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis, John Wiley,
Chichester, New York (1999)

22. Klawonn, F., Kruse, R.: Derivation of Fuzzy Classification Rules from Multidimensional
Data. In: The International Institute for Advanced Studies in System Research and
Cybernetics, Windsor, Ontario, pp. 90–94 (1995)

23. Eminov, M.: Querying a Database by Fuzzification of Attribute Values, 5.National
Econometrics and Statistics Symposium, Adana (19-22 September, 2001)

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 111–122, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Error Propagation Monitoring
on Windows Mobile-Based Devices

José Carlos Bregieiro Ribeiro1, Bruno Miguel Luís2, Mário Zenha-Rela2

1 Polytechnic Institute of Leiria (IPL), Morro do Lena, Alto do Vieiro,
Leiria, Portugal

jose.ribeiro@estg.ipleiria.pt
2 University of Coimbra (UC), CISUC, DEI, 3030-290,

Coimbra, Portugal
mzrela@dei.uc.pt

Abstract. Mobile devices, such as Smartphones, are being used virtually by
every modern individual. Such devices are expected to work continuously and
flawlessly for years, despite having been designed without criticality
requirements. However, the requirements of mobility, digital identification and
authentication lead to an increasing dependence of societies on the correct
behaviour of these 'proxies for the individual'. The Windows Mobile 5.0 release
has delivered a new set of internal state monitoring services, centralized into the
State and Notifications Broker. This API was designed to be used by context-
aware applications, providing a comprehensive monitoring of the internal state
and resources of mobile devices. In this paper we propose using this service to
increase the dependability of mobile applications by showing, through a series
of fault-injection campaigns, that this novel API is very effective for error
propagation profiling and monitoring.

Keywords: Robustness Testing, Dependability Evaluation, State and
Notifications Broker, Windows Mobile, COTS.

1 Introduction

The philosophy for mobile devices has been evolving towards the ‘wallet’ paradigm:
they contain important personal information, and virtually every adult carries one.
They are true “proxies for the individual” [1]. Additionally, people are getting used to
take care of their business affairs on these pervasive devices, since they are becoming
increasingly more sophisticated and are able to handle most basic tasks. But not all
mobile devices were designed with enterprise class security in mind, and even
components which were specifically designed for mission-critical applications may
prove to have problems if used in a different context. Retrofitting trust in any
technology is considerably harder than building it in from the start [1], especially
when users have already perceived it as invasive, intrusive, or dangerous.

Software behaviour is a combination of many factors: which particular data states
are created, what paths are exercised, how long execution takes, what outputs are
produced, and so forth [2]. An operating system is, itself, a dynamic entity [3], as
different services have diverse robustness properties; the way in which software

112 J. C. B. Ribeiro, B. M. Luís, and M. Zenha-Rela

makes use of those services will have impact on the robustness of their operations.
What’s more, mobile devices – such as Pocket PCs and Smartphones – are expected
to work continuously and flawlessly for years, with varying energy and in harsh
environmental conditions; this requires stringent internal state and resource
monitoring. One of the major problems in dependability evaluation is the difficulty of
observing what happens inside the system that is submitted to stress. This problem is
exacerbated when the source code of the system under evaluation is unavailable; alas,
this is the most common situation.

The Windows Mobile 5.0 release has delivered a new API with a set of services
targeting context-aware applications, the State and Notifications Broker (SNB) [4],
which aims to provide comprehensive monitoring of resources. This service, while
not providing true white-box testing tools, makes the system transparent enough to
allow for a semantically-oriented monitoring of relevant state-variables.

One of the key ideas presented in this paper is to use the internal monitoring
services provided by the State and Notifications Broker for error propagation profiling
and monitoring. Although most of the information provided by the State and
Notifications Broker could be obtained by other means, this tool enables the
monitoring of a standard set of relevant system variables defined by the API itself, in
a straightforward manner. We also aim to contribute to the issue of interpreting the
raw data produced into useful information, into insight. It is clear that automated
testing of black-box components requires (or, at least, can be greatly improved by)
built-in system support.

2 Background

Computer dependability can be defined as the trustworthiness of a computing system,
which allows reliance to be justifiably placed on the service it delivers [5]. The
applications envisaged by our approach, however, are not mission-critical – actually,
this is not the target of the Windows Mobile platform. This work’s focus is
trustworthiness – i.e. reliable and secure behaviour of standard personal applications –
such as those used by mobile devices for e-commerce or personal identification. In
fact, the key dependability attribute we are interested in is the robustness of software,
formally defined as the degree to which a software component functions correctly in
the presence of exceptional inputs or stressful environmental conditions [6]. The
robustness of software is tested by exercising it with a tailored workload. Black-box
or behavioural testing [7] is the preferred approach whenever the source code is not
available – as is the case of a proprietary operating system. There are several research
works on the evaluation of the robustness of operating systems [8-13]. Drivers were
identified as a major source of OS failures, and its effects were studied in [2, 14, 15].

The works based on the Ballista methodology [16-18] interested us particularly,
due to the possibility of automating the testing of component interfaces. Its main
contribution was the proposal of an object-oriented approach based on parameter data
types instead of component functionality, thus eliminating the need for function-
specific test scaffolding. Since we are emulating software errors, we focus on data
level errors flowing through the different module interfaces and on the evaluation of
the impact of these errors on the overall system dependability. This is also the

 Error Propagation Monitoring on Windows Mobile-Based Devices 113

approach followed in [2, 19-21]; however, in [20] the study of the impact of data
errors is focused on the consequences of error propagation in control applications.
The experiments presented in this paper closely follow the line of the work presented
in [2] by extending the observability; while in their work the error propagation
analysis is limited by the observation at the interface between components, we delve
deeper into the system internals, as this was made feasible by the State and
Notifications Broker of the Windows Mobile 5.0 platform. Johansson and Suri's work
has the added interest in that they present a case study based on Windows CE.net, the
platform from which Windows Mobile (our testbed) derives.

Thus, the main focus of this paper is on presenting, employing, and discussing the
usefulness of this service to increase the dependability of mobile applications by
showing, through a series of fault-injection campaigns, that this novel API is very
effective for error propagation profiling and monitoring. The rationale behind this
study falls into the 'callee interface fault injection' as defined in [22].

3 State and Notifications Broker Overview

The recent Windows Mobile 5.0 operating system has centralised its state information
into a single entity, the State and Notifications Broker1 – whether that information is
related to the device itself or to the standard Windows Mobile 5.0 applications. It
provides a standard architecture for monitoring state values for changes and for
distributing change notifications to the interested parties using a publish-subscribe
model, thus making it unnecessary to hunt down a separate function or API for each
individual state value. Also, prior to the introduction of the State and Notifications
Broker API, determining a specific state value often required several function calls
and additional logic.

Each state value is available either through native or managed code: native code
provides direct access to the behaviours and capabilities of the platform using the C or
C++ language, but the developer is responsible for handling the details involved in
interacting with the platform; managed code puts a greater focus on development
productivity by encapsulating details within class libraries. For the managed code
developers, the .NET Compact framework includes more than a hundred pre-defined
static base State and Notification Properties2 that represent the available state values;
in addition, original equipment manufacturers (OEMs) are free to add more values, as
the underlying implementation of the State and Notifications Broker uses the registry
as the data store. The base State and Notification Properties encompass information
on the system state, phone, user, tasks and appointments, connections, messages,
media player and time. To access the present value of a given property, managed-code
developers simply access the SystemState property that corresponds to the state
value of their interests: to receive state value change notifications, an application must
simply create an instance of the SystemState class and pass the appropriate
SystemProperty enumeration that identifies the value of interest, and attach a
delegate to the new SystemState instance's Changed event.

1 http://msdn2.microsoft.com/en-us/library/aa455748.aspx [cited: 2007/03/03].
2 http://msdn2.microsoft.com/en-us/library/aa455750.aspx [cited: 2007/04/03].

114 J. C. B. Ribeiro, B. M. Luís, and M. Zenha-Rela

Still, some problems persist. Firstly, there is no standard way for third-party
software companies to expose their own properties in the State and Notifications
Broker. Secondly, not all the device’s properties are exposed, although registry-based
custom-made states can be implemented to extend the default functionality. Thirdly,
even though C# managed code is easier to use, it includes reduced functionality when
compared to native C++ code.

4 Framework Description

In order to access the usefulness of the State and Notifications Broker for error
propagation monitoring and profiling, we’ve developed a prototype general-purpose
software testing tool – mCrash – that allowed us to automate the testing process. This
section describes this framework and contextualizes the use of the State and
Notifications Broker API.

Presently, mCrash allows automatic testing of classes, methods, parameters and
objects in the .NET framework. In order to achieve this, several .NET framework
APIs were employed, such as the System.Reflection and System.CodeDom
namespaces, and the Microsoft Excel Object Library. This tool is meant to
dynamically generate a test script, compile it into a .NET assembly, and invoke the
test process. Many ideas of this approach were inspired by previous work of others
and ourselves. This tool was first presented in [23], and its design closely follows the
guidelines proposed by [3, 24].

Four fundamental modules embody our tool: the Faultload Database; the Input
Generation and Fault Injection Module; the Postcondition Checker; and the Execution
Manager. These modules are schematically represented in Figure 1, and will be
discussed in further detail in the following subsections.

4.1 Faultload Database

The process of building the Faultload Database precedes the actual testing phase, as a
set of test cases must be created for each unique public constructor, method and
property of each class made available by the Module Under Test (MUT). The first
step is to catalogue all the MUTs information – including input and output
parameters, their data types and error codes. Most of these tasks are achieved
automatically by means of the Reflection API; alas, some of the information (e.g. the
expected return values) must be manually defined by the software tester.

The following step involves performing a domain analysis for each individual data
type in order to establish the faultload. Test cases encompass valid, boundary and
invalid conditions for the different data types; this allows the coverage of a vast array
of erroneous inputs, and also enables the tester to obtain a reference execution (i.e. the
gold run).

Finally, all this information is inserted in an Excel spreadsheet – using Excel API
Programming in the case of the automated tasks, and manually in the case of the
values that must be defined by the software tester. This spreadsheet holds an ordered
list of the API calls that will be used to test the MUT.

 Error Propagation Monitoring on Windows Mobile-Based Devices 115

Execution Manager

Faultload
Database

Input Generation and
Fault Injection Module

Postcondition
Checker

User Interface

Reflection

Class
Names
--

Parameter
Names
--

Parameter
Types

| |
| |

Manual
Stubbing

Automatic
Test Code
Generation
(CodeDom)

Late
Binding

System
Errors

(Exceptions)

Actual
Returns
and

Expected
Returns

System State
(State and

Notifications
Broker)

Module
Under
Test

Reports

Fig. 1. Framework scheme

4.2 Input Generation and Fault Injection Module

The Input Generation component dynamically generates test cases for a given set of
constructors, methods and properties; the Fault Injection component automatically
executes the test cases, and collects the information returned by a particular
function call.

The test cases’ source code is generated using the CodeDom API, and is based on
the parameters defined in the Excel spreadsheet during the Faultload Database
building process. Additionally, the necessary code for logging any events detected by
State and Notifications Broker is included in the test cases’ source code. Any changes

116 J. C. B. Ribeiro, B. M. Luís, and M. Zenha-Rela

to a monitored property are logged to a text file. If any parameters were left blank
during the Faultload Database definition, the user is given the option of either
allowing the application to insert random values and “dummy” objects, or entering a
“manual stub” himself. The ability to use late binding, provided by the Reflection
API, is employed to dynamically invoke the test cases; using this technique enables
the mCrash tool to resolve the existence and name of a given type and its members at
runtime (rather than compile time).

In short, a reference execution is run first; then, all the boundary and invalid test
cases defined for a given function are executed. The Postcondition Checker is in
charge of comparing these executions and presenting reports to the user. This
methodology automates the test case generation process, hence avoiding the need to
write source code, and it even allows for a considerable amount of system state to
be set.

4.3 Postcondition Checker

The Postcondition Checker monitors the environment for unacceptable events.
Assertions are put in two main places: at the system level and at the output. All of
these values are recorded in a Microsoft Excel spreadsheet.

At the system level, global environmental events are tracked using the State and
Notifications Broker. Two distinct categories of values are logged: those incoming
from the notifications received, and those of the properties being monitored – the
Base State and Notification Properties. The latter are logged before and after the fault
injection process takes place. At the output level, the tool validates return values (by
comparing them with the expected returns defined during the Faultload Database
definition) and checks if exceptions were thrown – and where they were thrown.

Finally, the results yielded by the boundary and invalid test values are
automatically compared with the gold run, and any discrepancies will be inserted in
the results spreadsheet.

4.4 Execution Manager

The Execution Manager provides the visual interface between the user and the
software testing tool. It allows for the definition of the parameters used during a given
software testing campaign, such as the location of the .NET IDE and of the MUT. It is
also responsible for dealing with the complexity of creating the three other modules,
and for feeding each one of them with the necessary incoming data.

Until now, this tool was only tested using Microsoft Visual Studio 2005 as the
IDE. During the fault injection process, the IDE is automatically started and the code
produced by the Fault Injection component is executed.

At the end of the software testing campaign, the results spreadsheet, containing all
the results gathered by the Postcondition Checker, is presented to the user.

5 Experimental Observations

In the experiment described in this paper, we employed the mCrash tool to conduct a
software testing campaign with the purpose of accessing Windows Mobile 5.0’s
trustworthiness properties and uncovering faults.

 Error Propagation Monitoring on Windows Mobile-Based Devices 117

5.1 Targets and Methodology

The targets of this experiment were the public properties made available by the
Microsoft Windows Mobile 5 Microsoft.WindowsMobile.PocketOutlook
namespace. We chose to target the PocketOutlook namespace in this study because
it is a productivity package used, essentially, by programmers that develop mobile
and context-aware applications, and also because its complexity is adequate for
research and demonstration purposes. The rationale for focusing our study on the
public properties is related with the extended insight that the State and Notifications
Broker allows.

We started by using mCrash to extract the list of public properties available in all
the classes made available by the PocketOutlook namespace. During the Faultload
Database building process, 9 distinct classes, including 96 distinct public properties,
were identified and catalogued. These 96 distinct public properties encompassed 13
different data types, including primitive data types (bool, int, string),
enumerations (WeekOfMonth, TimeSpan, Sensitivity, RecurrenceType,
Month, Importance, DaysOfWeek, DateTime, BusyStatus) and objects (Uri).

The methodology fallowed was that of performing fault-injection by changing the
target public properties’ values. Valid, boundary and invalid test values were defined
for each of the data types, except for bool properties, to which only true or false
values can be assigned. Manual stubbing was employed to instantiate an object and to
set the minimum amount of state needed for each individual test case. In the majority
of the cases, creating a “dummy” object sufficed but, in some situations, additional
complexity was required; these special situations were individually addressed in order
to create the state needed.

Preliminary experiments showed that some errors were only uncovered by the
operating system when the object carrying the faulty property was used as an input
parameter in a method call. In order to pinpoint such situations, we tested all of the
abovementioned objects as input parameters in a method belonging to the same class.

Finally, we analysed the results collected by mCrash in order to draw conclusions.
The logs generated by the Postcondition Checker were automatically compared to the
previously recorded gold run; all the exceptions thrown (and the phase of the testing
process in which they were thrown) were annotated; the values the properties
assumed (in the cases in which no exception was thrown) after the fault injection
process were compared to those that were expected. The results of this comparison
were thoroughly analysed, and will be discussed in the following subsection.

5.2 Results and Observations

As a result of our experiments, we were able to categorize the exceptions thrown
during the fault injection procedure in two types, according to their latency:

• if the exception is thrown during the process of assigning an erroneous value to a
property (i.e. if the assertion is located in the property’s setter method) the
exception is considered to be immediate;

• if the exception is thrown by the method that receives the object containing the
faulty property as an input parameter (i.e. the assertion is located in the method
called) the exception is considered to be late.

118 J. C. B. Ribeiro, B. M. Luís, and M. Zenha-Rela

Table 1. Data Types and corresponding Test Cases that threw late exceptions. Late Exception
Types and corresponding number of occurrences.

Late Exceptions

Data Types Test Cases

string string with 4096 characters;
"\\\u0066\n"; string.Empty; null

DateTime DateTime.MaxValue

EmailMessage.Importance (Importance)1000; (Importance)(-1);
Importance.Low; Importance.High

EmailMessage.Sensitivity (Sensitivity)int.MaxValue;
(Sensitivity)(-1);
Sensitivity.Confidential; 0

Exception types Ocurrences

System.ComponentModel.Win32Exception 60

System.InvalidCastException 17

Late exceptions are more problematic, due to the high probability of error
propagation. In fact, objects containing “faulty” properties could linger in the system
indefinitely, until they are used as an input parameter and the exception is triggered.
Late exception statistics are depicted in Table 1.

The vast majority of the test values that threw late exceptions were of the string
data type; the property can be assigned an invalid value, but when the object is used
as an input in a method an assertion existed to make sure that the string could not
exceed the maximum length. Actually, the maximum length of these strings is defined
in the documentation, but nothing is mentioned on when the check is made. What’s
more, this limit is documented in the property’s entry; hence the programmer has no
reason to assume that the check won’t be done immediately. The DateTime data type
is also problematic in terms of latency; the DateTime.MaxValue test value (which
we considered to be a boundary value) often generated a late exception. Such was also
the case of some of the enumeration types associated to the EmailMessage class.

Immediate exceptions included null, range and format exceptions. Table 2 resumes
the data for these categories of exceptions. The analysis of the exceptions’ data
doesn’t allow us to typify the data types according to category of exception generated
– there is no coherent behaviour or pattern that allows us to conclude that a particular
data type or a particular test case always have the same exception latency. Similar
invalid test values generate both immediate and late exceptions, which can only be
explained by the API’s internal structure (of which no source code is available).

It is at this point that the extended insight provided by the State and Notifications
Broker can prove to be invaluable; this API can be used to monitor properties
continuously. The software tester will thus be able to assert properties’ values all the
way through – and early on – the software testing process.

 Error Propagation Monitoring on Windows Mobile-Based Devices 119

Table 2. Data Types and corresponding Test Cases that threw immediate exceptions.
Immediate Exception Types and corresponding number of occurrences.

Immediate Exceptions

Data Types Test Cases

string String with 4096 characters

DateTime DateTime.MaxValue;
DateTime.MinValue;
new DateTime(int.MaxValue,
int.MaxValue, int.MaxValue);
new DateTime(int.MinValue,
int.MinValue, int.MinValue)

TimeSpan TimeSpan.MaxValue;
new TimeSpan(int.MaxValue,
int.MaxValue, int.MaxValue)

Uri new Uri(null); new Uri("dei.uc.pt")

EmailMessage.Importance (Importance)1000; (Importance)(-1)

EmailMessage.Sensitivity (Sensitivity)int.MaxValue;
(Sensitivity)(-1)

Appointment.BusyStatus (BusyStatus)(-1)

Exception types Ocurrences

System.ArgumentOutOfRangeException 23

System.ComponentModel.Win32Exception 16

System.UriFormatException 1

System.NullReferenceException 1

System.ArgumentNullException 1

With this in mind, we devoted special attention to the time frame between the

contamination of the property with an erroneous value and the usage of the “faulty”
object as an input parameter in a method (error latency). The measurements made to
the Appointment class were especially interesting, since the State and Notifications
Broker monitors an extensive set of properties regarding Task and Appointment
information. For instance, we observed that when the Appointment.Start property
was set to a value below the allowed range, an immediate “Argument Out Of Range”
exception was thrown; nevertheless the Postcondition Checker received a notification
of the property being set to its lower bound – i.e. some of the properties values are
changed even though an exception is thrown. What’s more, in a similar situation –
when the Appointment.Start property was set to a value above its upper bound –
an immediate exception of the type System.ComponentModel.Win32Exception
was thrown, and the property kept its previous value. This irregular behaviour
requires distinct handling of similar situations.

120 J. C. B. Ribeiro, B. M. Luís, and M. Zenha-Rela

Other anomalous behaviour observed using the State and Notifications Broker
included receiving notifications of changes to properties other than those directly
disturbed. The following observations are typical of this situation:

• when the Appointment.Start property was set to an invalid value, the
Appointment.End property was set to its default value;

• when the Appointment.End property was set to an invalid value the
Appointment.Start property was set to its default value.

Although this behaviour is not completely unreasonable – the Start and End
properties of the Appointment class are obviously related – it does constitute a
means for error propagation. It also provides a clear sign that to increase the
effectiveness of the postcondition checking the system must me monitored as a whole.
In some circumstances, we were also able to detect the contamination of objects
before the errors were detected by the runtime environment. For instance, in the
Appointment.Subject property, the “String with 4096 characters” boundary test
case (the documentation explicitly refers that an appointment’s subject is limited to
4096 characters) generated a late exception when the object was used as an argument
in a method call. Nevertheless, by means of the State and Notification Broker, it was
possible to observe that this property assumed a null value immediately after the
erroneous value was assigned to the property; it issued a notification for the change of
the base State and Notification Property CalendarAppointmentSubject, and the
logs also showed that the property was reset to null – its default value.

It must be stressed that this anomalous behaviour was unveiled by the State and
Notifications Broker – it published a notification of the property change – before the
runtime environment threw an exception.

6 Conclusions and Future Work

This paper proposes using a custom-tailored framework for accessing Windows
Mobile 5.0’s trustworthiness properties. For this, we employed the State and
Notifications Broker API for error monitoring and propagation profiling, and
presented an experimental study illustrating the feasibility of the approach.

The State and Notifications Broker centralizes system state information in
documented locations, and distributes change notifications to interested parties using
a publish-subscribe model. It provides built-in monitoring services to internal system
variables, which constitutes a means for keeping an eye on undesirable state value
modifications.

The experimental observations show that system built-in assertions are sparsely
distributed and less than thoroughly documented, and that errors can remain dormant
in the system until they are detected and dealt with e.g. by throwing an exception.
This behaviour renders the State and Notifications Broker particularly useful for
detecting erroneous internal states. Interesting observations include:

• receiving notifications of changes to properties other than those disturbed;
• receiving notification of a property being changed, even though an exception was

immediately thrown after an invalid value was assigned to it;

 Error Propagation Monitoring on Windows Mobile-Based Devices 121

• receiving notification of invalid values being assigned to a property; an exception
was only triggered when the faulty property’s instance was used as an argument
in a method call.

Even thought this API is not enough to prevent the contamination of internal objects
with erroneous values, we believe it represents an opportunity for enhancing
dependability in large-scale, not limited to mission-critical applications.

Our work so far was limited to the base State and Notification Properties defined
by default; nevertheless, these are clearly insufficient to cover the system as a whole.
Future work includes extending the set of properties exposed, with the purpose of
broadening the range of relevant system variables being monitored by our tool.

Along this work, we realized that the current fault-injection paradigm is still much
too centred on the stimulus-response functional model. However, a growing number
of real-world mission-critical applications are now based on the object-oriented
model; nonetheless, tools for dependability evaluation are seldom used in this context.

References

1. Langheinrich, M.: Privacy by Design - Principles of Privacy-Aware Ubiquitous Systems.
In: ACM UbiComp., ACM Press, New York (2001)

2. Johansson, A., Suri, N.: Error Propagation Profiling of Operating Systems, presented at
DSN (2005)

3. Voas, J.M., McGraw, G.: Software fault injection: inoculating programs against errors.
Wiley Computer Pub., New York (1998)

4. Wilson, J.: The State and Notifications Broker Part I, MSDN Library (2006)
5. Avizienis, A., Laprie, J.-C., Randell, B.: Fundamental Concepts of Dependability, LAAS-

CNRS N01145 (2001)
6. IEEE Standard Glossary of Software Engineering Terminology (IEEE Std610.12-1990)

(1990)
7. Beizer, B.: Black-box testing: techniques for functional testing of software and systems.

Wiley, New York, Chichester (1995)
8. Gu, W.N., Kalbarczyk, Z., Lyer, R.K., Yang, Z.Y.: Characterization of Linux kernel

behavior under errors, presented at DSN (2003)
9. Murphy, B., Levidow, B.: Windows 2000 Dependability. In: Workshop on Dependable

Networks and OS (2000)
10. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An Empirical Study of Operating

System Errors, presented at SOSP (2001)
11. Arlat, J., Fabre, J.-C., Rodriguez, M., Salles, F.: Dependability of COTS Microkernel-

Based Systems. IEEE Trans. on Computers 51, 138–163 (2002)
12. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the Reliability of Commodity OS’s.

Operating Systems Review 37, 207–222 (2003)
13. Jun, X., Zbigniew, K., Ravishankar, K.I.: Networked Windows NT System Field Failure

Data Analysis (1999)
14. Albinet, A., Arlat, J., Fabre, J.-C.: Characterization of the Impact of Faulty Drivers on the

Robustness of the Linux Kernel, presented at DSN (2004)
15. Durães, J., Madeira, H.: Multidimensional Characterization of the Impact of Faulty

Drivers on the OS Behavior. IEICE , 2563–2570 (2003)

122 J. C. B. Ribeiro, B. M. Luís, and M. Zenha-Rela

16. Kropp, N.P., Koopman, P.J., Siewiorek, D.P.: Automated Robustness Testing of Off the
Shelf Software Components. FTCS 98, IEEE (1998)

17. Koopman, P., DeVale, J.: Comparing the robustness of POSIX operating systems,
presented at FTCS 99 (1999)

18. Shelton, C.P., Koopman, P., Devale, K.: Robustness testing of the Microsoft Win32 API,
presented at DSN (2000)

19. Hiller, M., Jhumka, A., Suri, N.: PROPANE: An environment for examining the
propagation of errors in software. In: Proceedings of the ACM SIGSOFT 2002
International Symposium on Software Testing and Analysis, p. 81 (2002)

20. Askerdal, Ö., Gafvert, M., Hiller, M., Suri, N.: Analyzing the Impact of Data Errors in
Safety-Critical Control Systems. IEEE Trans. Inf. Syst. (2003)

21. Hiller, M., Jhumka, A., Suri, N.: EPIC: Profiling the propagation and effect of data errors
in software. IEEE Trans. on Computers 53, 512–530 (2004)

22. Koopman, P.: What’s Wrong With Fault Injection As A Benchmarking Tool?, presented at
DSN, Washington (2002)

23. Ribeiro, J., -Rela, M. Z.: mCrash: a Framework for the Evaluation of Mobile Devices
Trustworthiness Properties, presented at CMUS, Portugal (2006)

24. Li, K., Wu, M.: Effective software test automation: developing an automated software
testing tool. Sybex, London (2004)

Gossiping: Adaptive and Reliable Broadcasting in
MANETs	

Abdelmajid Khelil and Neeraj Suri

Technische Universität Darmstadt,
Dependable, Embedded Systems and Software Group,

Hochschulstr. 10, 64289 Darmstadt, Germany
Tel: (+49) 6151-16-3414, Fax: (+49)6151-16-4310

{khelil,suri}@informatik.tu-darmstadt.de

Abstract. Given the frequent topology changes in Mobile Ad Hoc Networks
(MANET), the choice of appropriate broadcasting techniques is crucial to ensure
reliable delivery of messages. The spreading of broadcast messages has a strong
similarity with the spreading of infectious diseases. Applying epidemiological
models to broadcasting allows an easy evaluation of such strategies depending
on the MANET characteristics, e.g. the node density. In this paper, we develop
an epidemic model for gossiping, which is a flooding-based probabilistic broad-
casting technique. We analytically investigate the impact of node density and for-
warding probability on the quality of gossiping. The result of our investigation is
to enable mobile nodes for dynamically adapting their forwarding probability de-
pending on the local node density. Simulation results in ns-2 show the reliability,
efficiency and scalability of adaptive gossiping.

Keywords: MANET, Broadcasting, Gossiping, Reliability, Epidemic Models,
Analytical Modeling.

1 Introduction

Mobile Ad Hoc Networks (MANETs) are composed by mobile devices equipped with
short range radios. Communication is possible between devices within each other’s ra-
dio range. The mobility leads to frequent network topology changes, which complicates
classical networking tasks such as broadcasting.

Network-wide broadcasting aims at distributing messages from the source node to all
other nodes in the network. It is a major communication primitive required by many ap-
plications and protocols in MANETs. Broadcast protocols present a fundamental build-
ing block to realize principal middleware functionalities such as replication [1] and
group communication [2]. Furthermore, broadcasting is frequently used to distribute
information and discover or advertise resources.

Flooding is a common approach to realize broadcasting in MANETs because of its
topology independency. In flooding-based approaches nodes forward a received mes-
sage to all their neighbors. Subsequently, all nodes within the network should receive
the message. Even though flooding might expose some unnecessary message overhead

	 Research supported in part by EC DECOS, NoE ReSIST and DFG GRK 1362 (TUD GKMM).

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 123–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 A. Khelil and N. Suri

it should provide a robust basic strategy for broadcasting in networks with an unknown
or changing topology. However, the characteristics of MANETs prohibit that a flooding
process reaches every node. If the node density, i.e. the number of nodes operating in
a given area, is too high the radio transmission will block out messages if too many
nodes are rebroadcasting the received messages as it is in blind flooding. This problem
is referred to as broadcast storms [3]. Here flooding shows a worse performance than
selecting a smaller number of nodes to forward the message.

Node spatial distribution is therefore a key issue for the performance of broadcast
protocols, since it determines the connectivity of the MANET. The investigation of
potential MANET application scenarios shows a wide range of possible node spatial
distributions and node mobilities. Therefore, a MANET generally shows a continu-
ously changing network connectivity over space and time. Consequently, an adaptive
solution for broadcasting that accounts for the heterogeneous and evolving node spatial
distribution and mobility is a major contribution.

Most of the research conducted on broadcasting in MANETs has primarily focused
only on carefully selected application and evaluation scenarios. Consequently, the de-
veloped broadcasting schemes do not yield good performance for other scenarios. Dif-
ferent comparative studies [4, 5] show that the existing broadcasting techniques are
tailored to only one class of MANETs with respect to node density and node mobility,
and are unfortunately not likely to operate well in other classes.

Our main objective is to provide an adaptive broadcast algorithm for a wide range of
MANET operation conditions. The main contribution of this paper is reliable gossip-
ing, a frugal and adaptive broadcasting technique. Reliable gossiping provides a simple
mechanism for tuning the forwarding probability of gossiping depending on the local
density of a node, reflected by the number of its neighbors. Reliability is a key de-
scriptor of correctly delivered broadcast messages. Using intensive simulations in ns-2
we show that reliable gossiping can be deployed in a wide spectrum of MANETs with
respect to node density, node mobility and communication range.

The remainder of this paper is organized as follows. In Section 2, we define the
system model and the fault model, and outline the requirements on broadcasting in
MANETs. Section 3 discusses the related work. Then, we detail the paper’s objectives
in Section 4. Section 5 shows how to adopt a simple mathematical compartmental model
from epidemiology to analytically investigate gossiping. Using this model we show how
to adapt the forwarding probability of gossiping to the local node density. In Section 6,
we evaluate adaptive gossiping and compare it to related work. We conclude the paper
in Section 7.

2 Preliminaries

2.1 System Model and Fault Model

In this work, we consider a MANET that is formed by N autonomous mobile nodes
of similar communication capabilities (communication range R and bandwidth r). We
assume that nodes may have no knowledge about their position or speed. The MANET
may show a very heterogeneous spatial distribution of nodes, from locally very sparse to

Gossiping: Adaptive and Reliable Broadcasting in MANETs 125

very dense, and very heterogeneous node mobility patterns, from low mobile to highly
mobile. We assume that nodes acquire neighborhood information by means of HELLO
beaconing.

The broadcast messages are uniquely identified, e.g. through the Media Access Con-
trol (MAC) address of the source and a locally unique sequence number. Nodes are
required to store the list of IDs of messages received or originated, in a so-called broad-
cast table. Thus nodes are able to decide, whether a received copy of a given message
is the first one.

In our fault model, we consider the following communication failures: Collision,
contention, frequent link breakage and network partitioning. We define network parti-
tioning as the split of the network into two (or more) disjointed groups of nodes that
can not communicate with each other. Tolerating these failures is a key issue to ensure
the reliability of broadcasting.

2.2 Requirements

As node density heavily influences the performance of broadcasting, and MANETs may
show a wide range of node densities, the first requirement on a broadcasting technique
for MANETs is to adapt to the node density, in order to reduce broadcast storms. Global
state in MANETs is hard to obtain and spatial distribution of nodes may change contin-
uously, therefore, the second requirement on such a strategy is that nodes independently
adapt to local MANET characteristics.

Furthermore, we identify two basic requirements of the applications on a broadcast-
ing protocol, i.e. delivery reliability and delivery timeliness. In this work, we consider
delay-critical applications. These applications require to efficiently reach all nodes be-
longing to the network partition, where the source node is located, while minimizing
the message delay.

3 Related Work

The design of broadcasting is a fundamental problem in MANETs and several broad-
cast strategies have been proposed in the literature. In [4, 5], the authors provide two
comparative studies for the existing broadcasting techniques. [4] classifies broadcasting
schemes into heuristic-based and topology-based. [5] subclassifies heuristic-based class
into probability-based and area-based. We categorize all these protocols into adaptive
and non-adaptive protocols.

Non-adaptive heuristic-based protocols use heuristics with predefined fixed param-
eters to reduce broadcast storms. They do not adapt to the time-varying MANET situ-
ations that show quite different levels of broadcast storms. Examples of non-adaptive
probability-based schemes are gossiping [6,3] and counter-based [3]. Examples of non-
adaptive area-based schemes are location-based [3] and distance-based schemes [3].
Non-adaptive topology-based protocols (e.g. Multipoint Relaying Broadcasting [7],
Connected Dominating Set Based [8], Minimum Forwarding Set Based [9], and De-
terministic Broadcast [10]) require an accurate topology information which is hard to

126 A. Khelil and N. Suri

acquire in highly mobile environments and due to collisions. That is why the perfor-
mance of these protocols drops for highly mobile scenarios [5] or highly congested
ones.

The common drawback of all these non-adaptive broadcasting techniques is that they
are optimized for specific scenarios and do not support a broader range of MANET
situations [5]. In order to suit non-adaptive broadcast schemes to a broader range of
operation conditions, some of them are adapted to local MANET characteristics.

In [11] the authors proposed two adaptive heuristic-based schemes, called adaptive
counter-based (ACB) and adaptive location-based (ALB), and one adaptive topology-
based scheme, called neighbor-coverage scheme (NC). Using a simulation-based ap-
proach the authors derived the best appropriate counter-threshold and coverage-threshold
as a function of the number of neighbors for ACB and ALB respectively. The authors
adapted the NC scheme by adjusting dynamically the HELLO interval to node mobility
reflected by neighborhood variation, so that the needed 2-hop topology information gets
more accurate. Despite this optimization, the NC scheme still has the main drawback
that neighborhood information may be inaccurate in congested networks. The authors
showed that these adaptive schemes outperform the non-adaptive schemes and recom-
mend ACB if location information is unavailable and simplicity is required. We will
compare our strategy to ACB in Section 6.5. [12] introduced the density-aware stochas-
tic flooding (STOCH-FLOOD). Nodes forward messages with the following probability:
p = min{1,11/n}, where n is the number of neighbors. In [13], the authors proposed a
similar scheme to STOCH-FLOOD. However, they use the counter of the message’s
copies received as an estimation for node density, which is obviously less accurate than
the number of neighbors. Therefore, we compare our strategy to STOCH-FLOOD.

4 Objectives

With respect to broadcasting, protocol designers are interested in understanding the
nature of the spreading depending on the protocol parameters and on the MANET prop-
erties. The quality of broadcasting can be expressed in the spreading progress, both in
time and in space. In this work, we focus on the spreading progress in time. We define
for a given message the spreading ratio at time t as the ratio of the number of nodes
that received the message up to time t to the total number of nodes N. We denote the
spreading ratio at time t by i(t), with 0 ≤ i(t) ≤ 1. The most relevant factors which
affect the characteristics of message spreading are the parameters of the broadcast pro-
tocol and the network connectivity over space and time. The network connectivity over
space and time is mainly determined by the node spatial distribution, node mobility,
communication parameters (e.g., transmission range and rate), and number of nodes N.

To obtain the spreading ratio i over time t for a given broadcast protocol and a given
MANET configuration, simulations can be used. Analytical models however provide
the spreading ratio as a mathematical expression, e.g. spreading ratio = i(t), which
represents an elegant method to describe the spreading ratio over time. Our approach
for analytically modeling broadcast protocols in MANETs consists in adjusting existing
mathematical models from the epidemiology to MANET broadcasting.

Gossiping: Adaptive and Reliable Broadcasting in MANETs 127

Existing mathematical models that describe the spreading of epidemics can be as
useful for network designers as they are for medical researchers. Medical researchers
use epidemic models both to describe the spread of disease within a population and to
take preventive or treatment measures. We use epidemic models both to describe and to
adapt broadcasting in MANETs.

5 Modeling and Adaptation of Gossiping

In this section, we demonstrate the utility of epidemic models to adapt broadcast proto-
cols in MANETs. For this we first detail the gossiping protocol and model it with the SI
epidemic model. Then, we adapt its core parameter, the forwarding probability, to the
local node density using the model.

5.1 The Gossiping Protocol

Gossiping in MANETs is simply defined as probabilistic flooding. On receiving the
first copy of a given message, a node forwards the message with a fixed probability
p to all nodes in its communication range using the broadcast primitive of the MAC
layer. In order to reduce the collision probability, nodes delay forwarding for a random
time between 0 and fDelay. The pseudo-code for gossiping is given by Algorithm 1. We
denote by random(x), a function that returns a random float value ∈ [0,x].

Algorithm 1. Gossiping (p)
1: Var: p, fDelay
2: List: broadcast table
3: # On receiving a DATA message M
4: if M.ID /∈ broadcast table then
5: # M is received for the first time
6: deliver M to the application
7: add {M.ID} to broadcast table
8: if random(1.0) ≤ p then
9: wait (random(fDelay))

10: broadcast M to all neighbors
11: end if
12: else
13: discard M
14: end if

According to this protocol, on average, only p ∗ N nodes forward the message. Thus
the number of saved forwards is (1− p)∗N. To maximize the number of saved forwards,
we have to reduce the probability p. But how much can we reduce it? [6] and [14] inves-
tigated gossiping, where every node forwards a message based on a fixed probability p.
In [6], the authors showed that gossiping exhibits a bimodal behavior. There is a thresh-
old value p0 such that, in sufficiently large random networks, the gossiping quickly dies

128 A. Khelil and N. Suri

out if p < p0 and the gossiping message spreads to the entire network if p > p0. Thus,
ideally we would set p close to p0 (slightly higher), and therefore save approximately
a ratio of (1 − p0) forwards compared to blind flooding. [14] investigated the phase
transition of gossiping in more details.

The authors in [6] identified an optimum value of p0 = 0.65 for their test scenarios.
Intuitively, an optimal probability for one node density may be suboptimal for other
densities, so this value is not likely to be globally optimal. Furthermore, since the node
density varies over time and space, we have to adjust the probability p to the local
density.

Deviating from [12] [13], we do not rely on pure simulations but we use an epidemic
model to determine the appropriate forwarding probability of gossiping depending on
the local node density.

5.2 Epidemic Model for Gossiping

In a previous work [15] we adopted the simple epidemic SI-model to the SPIN-based
broadcast protocol. In this section, we briefly summarize the main results of [15] and
adopt the SI-model to the gossiping protocol.

In the SI-model, a node follows a two-state compartmental model: It either carries
the message or not, and once “infected” by the message, a node remains infectious.
The message delay of gossiping is usually in the range of milliseconds or rarely a few
seconds, depending on the current network parameters and load. During this small time
interval we can assume that “infected” nodes remain infectious. Consequently, we can
model gossiping using the SI-model.

Let S(t) denote the number of susceptible nodes, and I(t) the number of infected
nodes at time t. The two-state mathematical SI-model is shown in Fig. 1. Each letter in
a rectangle refers to a compartment in which a node can reside.

S I

Fig. 1. Compartment diagram for the SI-model

Hereby, α is the broadcast force in the MANET. This parameter indicates the strength
of the broadcasting process and has the dimension 1/time. To develop the solution, we
need to write the mass balance equations for each compartment:

{
dS(t)

dt = −α∗ S(t)
dI(t)

dt = α∗ S(t)
(1)

The value of α is not constant, but depends on the number of susceptible and infec-
tious nodes and the probability of transmitting the message upon encounter. We say that
two nodes encounter each other if they are in each other’s communication range. We
define the encounter rate e as the average number of encounters per node and per unit of

Gossiping: Adaptive and Reliable Broadcasting in MANETs 129

time. Therefore, each susceptible node makes e encounters per unit of time. Thus in to-
tal, all the susceptible nodes make e∗S(t) encounters per unit of time. Since we assume
that nodes move autonomously, the encounters are at random with members of the total
population (N = S(t)+ I(t)). Then, only the fraction I(t)/N of the encounters are with
infectious individuals. Let β be the probability of message transmission in an encounter
between an infectious node and a susceptible node. Then the rate of susceptible nodes
that become infectious is β(e ∗ S(t)) I(t)

N . Thus the broadcast force is α = β∗e
N I(t). We

substitute

a =
β ∗ e

N
(2)

and call a the infection rate. As discussed in [15] with details, the solution of the system
of differential equations (1) results in that the spreading ratio is:

i(t) =
I(t)
N

=
1

1 +(N − 1)∗ exp(−a ∗ N ∗ t)
(3)

Eq. (2) shows that the infection rate a depends on the total number of nodes N, the
encounter rate e, and the probability β of message transmission, given an adequate en-
counter. We note here that the encounter rate e depends on the node spatial distribution,
node mobility and communication properties. β captures the impact of the communi-
cation properties and broadcast protocol parameters on the message propagation. This
shows that our modeling approach is hierarchical which allows us to proceed modu-
larly to further develop the analytical model by providing an analytical expression for
a depending on the MANET properties and the broadcast protocol parameters. The
calculation of a can be reduced to the determination of e from the mobility and com-
munication models, and the determination of β from the broadcast algorithm and the
communication model.

In [16], we investigated encounters between nodes in more details. We defined a
set of mobility metrics based on node encounters and presented a detailed statistical
and analytical analysis of these metrics for the widely used random waypoint mobil-
ity model [17] as example. In [16], we provided an analytical expression of the en-
counter rate (e) for the random waypoint mobility model assuming that nodes can
communicate if their geographical distance is lower than the communication range:
e = R ∗ (vmax − vmin)∗ d, where R, vmax, vmin and d are the communication range in m,
the maximum node speed in m/s, the minimum node speed in m/s and the node density
in 1/m2 respectively. The analytical computation of e depends on the complexity of the
considered mobility and network models.

The probability of message transmission given an adequate encounter (β) is a func-
tion of the gossiping probability (p) and the the message transmission reliability, which
could be easily calculated given an appropriate analytical model for the MAC layer. In
this work, we will not further consider the analytical computation. Instead of that, we
use an empirical approach to calibrate our analytical model.

We proceed similarly to the epidemiologists who assume the availability of some ex-
perimental data that roughly describe the spreading of the infectious disease to calibrate
the corresponding epidemic model. We rely on a few simulations to calibrate the epi-
demic model for gossiping. First of all, we determine the spreading ratio of gossiping

130 A. Khelil and N. Suri

for the considered MANET scenario using simulations. Afterwards, we use the least
squares method to fit the simulation results to Eq. (3). We use the software package
mathematica [18] to perform this fitting procedure. If the network is partitioned, we
set the delay for unreachable nodes to be ∞. Therefore, the infection rate is approxi-
mately 0 for highly partitioned MANETs.

5.3 Adaptation of Gossiping

The goal of adapting gossiping is to achieve higher efficiency by reducing the number of
forwarders, but without sacrificing the reliability or experiencing any significant degra-
dation. Since the intensity of the broadcast storm depends on the local node density and
may vary over time and space, we should adapt the gossiping probability p to the node’s
current number of neighbors, which reduces forward redundancy, contention, and col-
lisions. In this section, we adapt gossiping to the local node density by determining the
appropriate gossiping probability as a function of the number of neighbors.

Simulation Model. We use ns-2 [19] for the simulation-based performance analysis.
We generate N mobile nodes in a 1km x 1km two-dimensional field, where nodes move
according to the random waypoint model [17]. We vary the node speed between 0 m/s
and a maximum speed value vmax m/s, and select a pause time uniformly between 0 and
2s. The simulation parameters are summarized in Table 1.

Table 1. Simulation parameters

Parameters Value(s)

Simulation area 1000m x 1000m
Number of nodes N ∈ [50, 1000]
Comm. range R ∈ {50, 100, 200, 300}m
Bandwidth r = 1 Mbps
Message size 280 bytes
Mobility model Random waypoint
- Max speed - vmax ∈ [0,30] m/s
- Pause - Uniform between 0 and 2s
fDelay 10ms

We use the following traffic model. At the beginning of the simulation (namely ran-
dom between first and second sec) each of the S senders sends a single message. The
simulation time selected for all scenarios in this paper is 20s. For the adaptation process,
we set S = 1, R = 100m and vmax = 3m/s.

The random waypoint model shows an almost uniform node spatial distribution. This
property simplifies the conversion of node density to number of neighbors and vice
versa. Given n the number of neighbors and R the communication range, a node easily
computes its local density by:

d =
n + 1
πR2 ⇔ n = πR2d − 1 (4)

Gossiping: Adaptive and Reliable Broadcasting in MANETs 131

As mentioned before, nodes acquire neighborhood information by means of HELLO
beaconing. For all simulations in this work we use a random beaconing period between
0.75s and 1.25s. A node removes a neighbor from its neighbor list, if during 2s no
beacon is received from this neighbor.

Adaptation Using the Epidemic Model. The infection rate a clearly depends on the
gossiping probability p. If this probability is 0, the infection rate will also be 0. If p
increases, the infection rate also increases. However, if the network is very dense and
all nodes forward every newly received message, contention and collisions increase, so
that delay increases, and subsequently the overall infection rate will decrease. Hence,
we investigate the impact of both node density and gossiping probability on the in-
fection rate in more details. This investigation allows the selection of the appropriate
probability depending on node density.

According to the SI-model, the infection rate determines the spreading ratio and
therefore it is a measure for delivery reliability and timeliness. The higher the infection
rate, the lower the mean delay. In the following we show how we used these results to
adapt gossiping. In order to adapt the forwarding probability to the node density, we
should select the probability that maximizes the infection rate. We vary node density
and the forwarding probability p and compute the corresponding infection rate for some
combinations. Fig. 2 (a) shows the measured infection rates and their interpolation.
Fig. 2 (b) shows the optimal probability, which should be used for gossiping depending
on the MANET node density.

Consistent with our second requirement on a broadcasting technique, we let every
node set the gossiping probability locally and independently. A node j can easily esti-
mate its local node density d j using Eq. (4), given its number of neighbors n j. According
to the value of d j the node sets on-the-fly the forwarding probability p j for gossiping.

To avoid the computation of local node density, which also assumes that nodes know
their communication range R, we propose that nodes select the gossiping probability

gossiping probability p node densit
y (1

/k
m

^2)

in
fe

ct
io

n
 ra

te
 (1

/s
)

in
fe

ct
io

n
 ra

te
 (1

/s
)

(a) Infection rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

 0 5 10 15 20 25

o
p

ti
m

al
 g

o
ss

ip
in

g
 p

ro
b

ab
ili

ty

node density (1/km^2)

number of neighbors

(b) Optimal probability

Fig. 2. Adaptation of gossiping using the infection rate

132 A. Khelil and N. Suri

depending on the current number of neighbors n. By scaling the x-axis of Fig. 2 (b)
using Eq. (4), we get the optimal gossiping probability p as a function of n. We could
now provide the discrete values of this curve as a lookup table that maps the number of
neighbors to the probability values. At run-time, nodes could then access this lookup
table in order to set the gossiping probability dynamically, depending on their current
number of neighbors.

Nevertheless, in order to elegantly present our adaptation results for the community,
we analytically express the gossiping probability depending on the number of neigh-
bors. To ensure adaptation for higher dense networks, we extrapolate the gossiping
probability value to higher number of neighbors. We use the following series expansion
ansatz: p(n) = a+b/n. The fitting process using the least squares method, recommends
a = 0.175 and b = 6.050. The fitting standard error is about 4.75%. The result of the
adaptation is a simple function that nodes can easily use to calculate the appropriate
gossiping probability (p) for the current number of neighbors (n). The function is given
by Eq. (5) or simply Eq. (6):

{
p = 1.0, i f n ≤ 7
p = 0.175 + 6.05/n i f n ≥ 8

(5)

p = min (1.0 , 0.175 +
6.05

n
) (6)

Relevance of Epidemic Models for Protocol Adaptation. We show the relevance
of the analytical epidemic models for the adaptation of broadcast protocols through
investigating alternative approaches for the adaptation.

Fig. 3 shows the spreading ratio of gossiping over time for 500 nodes and different
forwarding probabilities. We conclude that only probabilities higher than 0.6 provide a
delivery reliability close to 100%. We also conclude that the forwarding probability 0.6
provides faster propagation than higher probabilities. This is due to broadcast storms
if more than 60% of nodes forward the packet. Thus, investigating the spreading ra-
tio obtained from simulations provides an alternative approach to fix the appropriate
gossiping probability.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

sp
re

ad
in

g
ra

tio

time (s)

N=500

p=1.0
p=0.8
p=0.6
p=0.4
p=0.2

Fig. 3. Adaptation of forwarding probability (Simulation-based approach)

Gossiping: Adaptive and Reliable Broadcasting in MANETs 133

However, the selection of the probability is achieved manually and therefore it is not
practical and error-prone. Furthermore, the approach requires running simulations for
probability values as fine as possible to increase the accuracy of adaptation. Compar-
ing the simulation-based approach with the approach relying on the epidemic model we
note the simplicity of the last approach, which provides an automated method for the se-
lection of the appropriate forwarding probability depending on node density, using only
fewer simulations. The use of the SI-model for adaptation of key protocol parameters
to relevant network properties can be easily repeated for further adaptation needs.

6 Evaluation of Reliable Gossiping

We now evaluate the adaptive gossiping protocol with scenarios that show a wide range
of node densities and node speeds. Additionally, we study the impact of communication
range on the performance of adaptive gossiping. We also compare adaptive gossiping
with STOCH-FLOOD [12] and ACB [11]. Our evaluation approach is simulation-based.

We use the same simulation model as in Section 5.3. We set the number of senders
to S = 25. Since the knowledge of the partitioning of the MANET is important for
understanding the performance of adaptive gossiping, we computed the average number
of partitions for the different scenarios that we consider in this section (Fig. 4). For this
computation we use our own framework presented in [20].

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 150 200 250 300 350 400 450 500

av
g

P
ar

ti
ti

o
n

N
u

m
b

er

number of nodes

random waypoint , speed = 3m/s

50m
100m
200m
300m

Fig. 4. Average number of partitions

6.1 Performance Metrics

In order to evaluate broadcast protocols with respect to delivery reliability and timeli-
ness, the performance metrics reachability and delay respectively are commonly used in
the broadcast community. In the following we define these both metrics. With respect to
a given broadcast message, we denote by #Forwd the number of nodes that forwarded
the message and by #Reach the number of nodes that received the message after the
termination of the protocol.

REachability (RE): The ratio of nodes receiving the message to the total number of
nodes, i.e. RE = #Reach

N (∈ [0,1]). The reachability metric measures the delivery
reliability.

134 A. Khelil and N. Suri

Delay: Average end-to-end delay over all receivers. Denoting by ts the origination time
of the message and by t j the arrival time of the message at node j, we calculate the
delay as follows: delay = 1

#Reach ∑reachedNode j
(t j − ts).

To evaluate the efficiency of broadcast protocols the message complexity is a key
factor. The common efficiency metric for broadcast protocols is:

MNF: Mean Number of Forwards per node and message. MNF = #Forwd
N .

As we used the spreading ratio for describing the quality of a broadcast protocol,
we differentiate the above metrics from the spreading ratio. Both metrics RE and delay
are easily gained from the spreading ratio. Given the spreading ratio as a time function
i(t) ∈ [0,1]. The RE is the the maximum value of the spreading ratio (reached when the
broadcast protocol terminates), or RE = max(i(t)). The delay is calculated as follows:

1
RE

∫ RE
0 i−1(t)dt, where i−1(t) is the inverse function of i(t).

6.2 Impact of Node Density and Node Mobility

For this study, we vary the node density by tuning the total number of nodes and keep-
ing the area unmodified. From Fig. 5 (a), we observe that the reachability of adaptive
gossiping first increases with node density, reaches a maximum and then starts to de-
crease. We qualitatively explain this effect as follows: Obviously, gossiping can only
reach nodes that belong to the partition, which contains the source node. For random
waypoint, the mean number of partitions decreases with the increasing number of nodes
(Fig. 4, 100m range). This means that the average partition size is increasing. Therefore,
reachability increases with the increasing number of nodes. For high number of nodes,
collision probability becomes higher and the reachability begins to decline slightly.

The impact of node speed is marginal. However, we present three observations.
Firstly, for very sparse networks the mobility has no impact on the reachability. Sec-
ondly, for scenarios that are neither very sparse nor connected (e.g. 200 nodes), the
mobility may help to overcome network partitioning and the reachability increases with
higher speeds. Thirdly, for dense scenarios, reachability decreases with higher speeds.
The reason is that a node may sense a free carrier and starts to transmit; but while
moving very fast it disturbs other ongoing transmissions.

In Fig. 5 (b), we show the message overhead (MNF) of adaptive gossiping. For ran-
dom waypoint, we can assume a uniform node distribution, and therefore estimate the
MNF of gossiping as follows: MNF ≈ p ∗ RE . This explains the behavior of MNF,
which shows a strong similarity to that of reachability. For lower number of nodes, The
forwarding probability p is frequently set to 1.0 and MNF ≈ RE . For higher number of
nodes, nodes use lower forwarding probabilities, thus increasing the number of saved
forwards, and therefore MNF < RE . The delivery delay increases with increasing num-
ber of nodes since the number of traversed hops to the destination and the buffering
time of messages at the MAC layer increase (Fig. 5 (c)).

6.3 Impact of Transmission Range

In this study, we investigate the performance of gossiping for different communication
ranges ∈ {50,100,200,300}m. We note that an increase in communication range can
be interpreted as an increase of node density.

Gossiping: Adaptive and Reliable Broadcasting in MANETs 135

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

 r
ea

ch
ab

ili
ty

number of nodes

random waypoint , 25 senders , 0.001 pkt/s

3m/s
12.5m/s

20m/s
30m/s

(a) Reachability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400 450 500

M
N

F

number of nodes

random waypoint , 25 senders , 0.001 pkt/s

3m/s
12.5m/s

20m/s
30m/s

(b) MNF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250 300 350 400 450 500

de
la

y
(s

)

number of nodes

random waypoint , 25 senders , 0.001 pkt/s

3m/s
12.5m/s

20m/s
30m/s

(c) Delay

Fig. 5. Impact of node density and speed

The reachability of gossiping increases with the communication range (Fig. 6 (a)).
For low communication ranges, the reachability decreases with increasing number of
nodes and reaches a minimum (by N = 200 and for R = 50m), and increases for higher
numbers of nodes. We explain this decrease of reachability as follows. For highly sparse
MANETs, an increase of number of nodes, leads to a decrease in the ratio of partition
size to the total number of nodes. Consider the extreme case, where nodes are isolated
and the reachability of gossiping is 1/N. If we increase the number of nodes by δN and
all nodes remain isolated, the reachability of gossiping is 1/(N + δN). Therefore, the
reachability of gossiping decreases with increasing number of nodes in highly sparse
MANETs.

For higher communication ranges, the curve of reachability however shows a max-
imum. The reachability slightly decreases for higher numbers of nodes due to the in-
creasing number of collisions. The number of collisions increases since most of source
nodes are within each other’s communication range. Therefore, one broadcast has more
impact on the other broadcasts taking place almost simultaneously. Gossiping has not
been adapted to network load. Consequently, for higher network loads the reachability
of gossiping is likely to decrease.

136 A. Khelil and N. Suri

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400 450 500

re
ac

ha
bi

lit
y

number of nodes

 random waypoint , max speed = 3m/s

50m
100m
200m
300m

(a) Reachability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400 450 500

M
N

F

number of nodes

 random waypoint , max speed = 3m/s

50m
100m
200m
300m

(b) MNF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 100 150 200 250 300 350 400 450 500

de
la

y
(s

)

number of nodes

 random waypoint , max speed = 3m/s

50m
100m
200m
300m

(c) Delay

Fig. 6. Impact of transmission range

For discussing the message overhead, we first consider the communication range
100m (Fig. 6 (b)). MNF first increases with the number of nodes, reaches a maximum
and then decreases. The maximum is reached, when almost all nodes forward broadcast
messages, i.e. gossiping goes into blind flooding. MNF reaches its maximum, when the
MANET starts to be constituted of one large partition and a few small partitions. If
the MANET node density increases, adaptation of gossiping runs and saves a number
of forwards, which is reflected by the decrease of MNF. For the 200m communication
range, the maximum is reached for 100 nodes. For a 300m communication range the
maximum moves to the left of 50 nodes and is no longer observed for our experiment
settings. For a 50m range, MNF is very close to reachability, since the node density
is very low and almost all receivers forward messages. The maximum is reached for a
number of nodes that is higher than 500 nodes.

We note that the performed delay should be interpreted relatively to the achieved
reachability. Fig. 6 (c) shows that the delay decreases with an increasing communication
range (except for 50m). The explanation is that: If the communication range gets higher,
a transmission is more likely to reach more nodes, which decreases average delay.

Gossiping: Adaptive and Reliable Broadcasting in MANETs 137

We observe however that the delay for 50m is lower than that for higher communi-
cation ranges. This is due to the fact that, for 50m the MANET is highly partitioned
(Fig. 4) and a network partition is composed of few nodes. Gossiping reaches these few
nodes in a few transmissions, i.e. very fast. Similarly, we explain the low delay values
for 100m range and number of nodes less than 100.

6.4 Comparison of Reliable Gossiping to the Optimal Case

From the above studies, we realize the strong need for a global view with respect to
network partitioning in the MANET for a better understanding of the protocol perfor-
mance. In [20], we presented the utilities required for ns-2 users, in order to simplify the
access to this global view. In the following, we present the global evaluation of reliable
gossiping.

Reliable gossiping aims to efficiently reach all nodes in the partition where the broad-
cast source is located. In this section, we aim to investigate in more details the deliv-
ery reliability of gossiping. In particular, we define the optimal gossiping reachability
(OG RE) as the ratio of the size of the partition containing the gossiping source node
to the total number of nodes: OG RE = partition size

N .
The reachability of adaptive gossiping should correlate with the partition size. Fig. 7

(a) shows that the gossiping reachability is lower than the optimal gossiping reacha-
bility and that the difference is more important for higher number of nodes. This is
due to collisions, which prohibit gossiping from progressing, and become more fre-
quent with increasing number of nodes. Fig. 7 (b) shows the frequency histogram of
the ratio of the number of nodes reached by gossiping to the sender’s partition size.
We observe that in most of cases gossiping reaches either more than 90% of the parti-
tion nodes or less than 10% of nodes, which proves the transitional behavior discussed
in [6] [14].

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 250 200 150 100 75 50

re
ac

h
ab

ili
ty

number of nodes

 random waypoint , 3m/s , range = 100m
gossiping

optimal gossiping

(a) Reachability

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.5 0.8 1

fr
eq

u
en

cy
 /

 #
G

o
ss

ip
in

g
s

gossiping reachability / partition size

300 nodes
distribution of gossiping reachability

(b) Frequency histogram

Fig. 7. Comparison of reliable gossiping to the optimal case

138 A. Khelil and N. Suri

6.5 Comparison to Related Work

We compare the performance of our adaptive scheme to that of the Adaptive Counter
Based scheme (ACB) [11] and of stochastic flooding (STOCH-FLOOD) [12]. We arbi-
trarily fix vmax to 3 m/s. However, we vary the total number of nodes N.

The ACB scheme uses a random time span to count redundant packet receptions
and forwards the message after this span, only if the counter value is below a thresh-
old value. This time period is comparable to the random forwarding delay of gossip-
ing (f Delay) and STOCH-FLOOD. Therefore, we choose the same value for all three
protocols, i.e. 10ms, which is also used in [5]. The adaptive thresholds for all three
protocols are shown in Fig. 8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
 0

 1

 2

 3

 4

 5

 6

p
ro

b
ab

ili
ty

A
C

B
 t

h
re

sh
o

ld

number of neighbors

ACB threshold
STOCH-FLOOD probability

Gossiping probability

Fig. 8. Adaptive thresholds

The comparison of reliable gossiping to STOCH-FLOOD can be intuitively under-
taken based on the comparison of probability functions used by each protocol (Fig. 8).
Reliable gossiping starts decreasing the forwarding probability for a number of neigh-
bors equal to 8 or higher. However, STOCH-FLOOD starts decreasing the probability
from 11 neighbors. Up to 28 neighbors gossiping uses a lower probability than that
of STOCH-FLOOD. Therefore, both reliable gossiping and STOCH-FLOOD perform
very comparably with respect to reachability and delay (Fig. 9 (a) (c)).

We observe that adaptive gossiping has a slightly higher reachability than both ACB
and STOCH-FLOOD for higher numbers of nodes. This is due to the fact that adap-
tive gossiping uses lower probability value than STOCH-FLOOD and that ACB stops
to tune the counter threshold for higher node densities. Compared to ACB, gossiping
shows a comparable reliability and a slightly lower delay. The MNF of adaptive gos-
siping is slightly lower than that of STOCH-FLOOD and ACB (Fig. 9 (b)). We observe
that ACB has the lowest reachability, the highest message overhead and the highest de-
lay for higher number of nodes (500 nodes). This also due to that ACB stops adjusting
the counter threshold for higher number of nodes (Fig. 8).

Summarizing, we can roughly conclude that adaptive gossiping shows a very compa-
rable overall performance to STOCH-FLOOD and that both protocols outperform ACB
and particularly in highly dense scenarios. Between adaptive gossiping and STOCH-
FLOOD, we identify the following marginal differences. In extremely dense networks,

Gossiping: Adaptive and Reliable Broadcasting in MANETs 139

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

re
ac

h
ab

ili
ty

number of nodes

 random waypoint , 3m/s , range=100m

 gossiping
STOCH-FLOOD

ACB

(a) Reachability

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

M
N

F

number of nodes

 random waypoint , 3m/s , range=100m

 gossiping
STOCH-FLOOD

ACB

(b) MNF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250 300 350 400 450 500

d
el

ay
 (s

)

number of nodes

 random waypoint , 3m/s , range=100m

 gossiping
STOCH-FLOOD

ACB

(c) Delay

Fig. 9. Comparison of reliable gossiping to related work

STOCH-FLOOD saves more forwards and reaches slightly more nodes than adaptive
gossiping. However, in less dense scenarios adaptive gossiping saves more forwards
and reaches slightly less nodes than STOCH-FLOOD.

Simulation results that we do not include here show that the three protocols achieve
a very comparable performance for further mobility models such as the reference-point
group mobility model [21] and the graph-based mobility model [22], which show quite
different node spatial distributions.

7 Conclusions

We showed at the example of gossiping, how to use epidemic models to adapt broad-
casting strategies in MANETs. We used the analytical epidemic model developed for
gossiping to adapt the main parameter of gossiping, i.e. the forwarding probability, to
the most relevant MANET property, i.e. node density. The result is a reliable broad-
cast protocol that adapts locally to the continuously changing node spatial distribution.

140 A. Khelil and N. Suri

Gossiping dynamically adjusts the forwarding probability only based on the number of
neighbors, a locally available information, and without requiring any particular infor-
mation, such as distance, position, or velocity.

Intensive simulations show the near-optimal reliability of adaptive gossiping. Fur-
thermore, the dynamic selection of the forwarding probability reduces the total num-
ber of nodes forwarding a certain message, thus effectively alleviating the broadcast
storm problem. We additionally highlight the simplicity, frugalness and scalability of
our protocol. Adaptive gossiping performs very comparably to the few adaptive broad-
cast schemes known from the literature. This shows the applicability of the analytical
platform we developed for the adaptation of MANET broadcast protocols. Particularly,
we emphasize that the use of the SI-model for adaptation of further protocols to further
relevant MANET properties can be easily repeated.

References

1. Bellavista, P., Corradi, A., Magistretti, E.: Redman: An optimistic replication middleware for
read-only resources in dense manets. Pervasive and Mobile Computing 1(3), 279–310 (2005)

2. Pleisch, S., Clouser, T., Nesterenko, M., Schiper, A.: Drift: Efficient message ordering in
ad hoc networks using virtual flooding. In: Proc. of the IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), pp. 119–131. IEEE Computer Society Press, Los Alamitos (2006)

3. Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The broadcast storm problem in a mobile ad hoc net-
work. In: Proc. of the Annual ACM/IEEE International Conference on Mobile Computing
and Networking (MOBICOM), pp. 151–162. IEEE Computer Society Press, Los Alamitos
(1999)

4. Yi, Y., Gerla, M., Kwon, T.: Efficient flooding in ad hoc networks: A comparative perfor-
mance study. In: Proc. of the IEEE International Conference on Communications (ICC), pp.
1059–1063. IEEE Computer Society Press, Los Alamitos (2003)

5. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc networks.
In: Proc. of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MOBI-
HOC), pp. 194–205. ACM Press, New York (2002)

6. Haas, Z., Halpern, J., Li, L.: Gossip-based ad hoc routing. In: Proc. of the IEEE Joint Confer-
ence of Computer and Communication Societies (INFOCOM), pp. 1707–1716. IEEE Com-
puter Society Press, Los Alamitos (2002)

7. Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying for flooding broadcast messages
in mobile wireless networks. In: Proc. of the 35th Annual Hawaii International Conference
on System Sciences (HICSS), pp. 3866–3875 (2002)

8. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-based
broadcasting algorithms in wireless networks. IEEE Transactions on Parallel and Distributed
Systems 13(1), 14–25 (2002)

9. Calinescu, G., Mandoiu, I., Wan, P., Zelikovsky, A.: Selecting forwarding neighbors in wire-
less ad hoc networks. In: Proc. of the 5th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications (DIAL-M), pp. 34–43 (2001)

10. Basagni, S., Bruschi, D., Chlamtac, I.: A mobility transparent deterministic broadcast mech-
anism for ad hoc networks. ACM/IEEE Transactions on Networking 7(6), 799–807 (1999)

11. Tseng, Y., Ni, S., Shih, E.: Adaptive approaches to relieving broadcast storms in a wireless
multihop mobile ad hoc networks. IEEE Transactions on Computers 52(5), 545–557 (2003)

12. Cartigny, J., Simplot, D.: Border node retransmission based probabilistic broadcast protocols
in ad-hoc networks. In: Proc. of the Annual Hawaii International Conference on System
Sciences (HICSS), 303 (2003)

Gossiping: Adaptive and Reliable Broadcasting in MANETs 141

13. Zhang, Q., Agrawal, D.: Dynamic probabilistic broadcasting in manets. Journal of Parallel
and Distributed Computing 65(2), 220–233 (2005)

14. Sasson, Y., Cavin, D., Schiper, A.: Probabilistic broadcast for flooding in wireless mobile ad
hoc networks. In: Proc. of The IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1124–1130. IEEE Computer Society Press, Los Alamitos (2003)

15. Khelil, A., Becker, C., Tian, J., Rothermel, K.: An epidemic model for information diffusion
in manets. In: Proc. of the ACM international workshop on Modeling, analysis and simula-
tion of wireless and mobile systems (MSWiM), pp. 54–60. ACM Press, New York (2002)

16. Khelil, A., Marrón, P., Rothermel, K.: Contact-based mobility metrics for delay-tolerant ad
hoc networking. In: Proc. of The 13th IEEE/ACM International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
435–444. ACM Press, New York (2005)

17. Broch, J., Maltz, D., Johnson, D., Hu, Y., Jetcheva, J.: A performance comparison of multi-
hop wireless ad hoc network routing protocols. In: Proc. of the Fourth Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MOBICOM), IEEE Com-
puter Society Press, Los Alamitos (1998)

18. Wolfram-Research-Inc.: Mathematica, version 4.0 (1999)
19. McCanne, S., Floyd, S.: Ns network simulator, http://www.isi.edu/nsnam/ns/
20. Khelil, A., Marrón, P., Dietrich, R., Rothermel, K.: Evaluation of partition-aware manet pro-

tocols and applications with ns-2. In: Proc. of the 2005 International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS) (2005)

21. Hong, X., Gerla, M., Bagrodia, R., Pei, G.: A group mobility model for ad hoc wireless
networks. In: Proceedings of the 2nd ACM international workshop on Modeling, analysis
and simulation of wireless and mobile systems (MSWiM), pp. 53–60. ACM Press, New
York (1999)

22. Tian, J., Hähner, J., Becker, C., Stepanov, I., Rothermel, K.: Graph-based mobility model for
mobile ad hoc network simulation. In: Proceedings of the 35th Annual Simulation Sympo-
sium (ANSS), pp. 337–344 (2002)

http://www.isi.edu/nsnam/ns/

On the Behavior of Broadcasting Protocols for

MANETs Under Omission Faults Scenarios�

Talmai Brandão de Oliveira, Victor Franco Costa, and Fab́ıola Greve

Federal University of Bahia,
Computer Science Department,
Mechatronics Graduate Program
Salvador BA 40.170-110, Brazil

talmai@ufba.br, vfcosta@dcc.ufba.br, fabiola@dcc.ufba.br

Abstract. Ensuring reliable communication between nodes is a major
challenge in mobile ad-hoc networks due to wireless signal propagation
that can be significantly affected by terrain, obstacles, battery exhaus-
tion and node mobility. Existing broadcasting protocols for MANETs
are able to deal with mobility, as well as congestion and collision, but
only when under a fail-stop failure model. However, this model is not a
good representative of the real scenarios of faults frequent in MANETs
such as link failures, temporary network partitions, topology changes and
momentary node failures. In this work we evaluate – through the aid of
simulation experiments – how well MANET broadcasting protocols be-
have when under a more realistic failure model, which are characterized
by omission faults. We also discuss their properties and behaviors when
taking reliability into consideration. The study conducted here show that
most protocols are highly impacted by node failures and are not capable
of maintaining high delivery rate. Some even exhibit coverage levels that
are unreasonable to expect from broadcasting protocols when placed in
a real world scenario.

Keywords: Mobile Ad-Hoc Networks, Broadcasting, Fault-Tolerant Wi-
reless Communication, Reliable Broadcasting.

1 Introduction

A mobile ad hoc network (MANET) is a special kind of network where the mobile
hosts (also called nodes) are capable of communication restricted to their wire-
less transmission range. Thus they are only able to communicate directly with
neighboring nodes. The lack of fixed and wired gateways (base stations) forces
cooperation between the nodes every time a packet has to be forwarded. Moreo-
ver, because of the shared transmission channels, nodes are not able to selectively
transmit: whenever it sends a message, all of its neighbors receive it. Whenever
messages overlap, collisions may occur, preventing correct reception [1].

� This work is supported by grants from CNPQ - Brazil and FAPESB - Bahia/Brazil.

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 142–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Behavior of Broadcasting Protocols for MANETs 143

Broadcasting refers to the process by which one node sends messages to all other
nodes in the network. It is an essential operation in all kind of networks since it
may be used to collect global information, to support addressing algorithms, to
implement multicasting and, particularly in MANETs, to help routing protocols
to propagate routing-related information [2]. Broadcasting is an active research
topic and the most significant challenge in its development is compensating bet-
ween the number of messages broadcast and the number of nodes reached [3].

A large number of algorithms for broadcasting in MANETs exist. Most of
them assume that during the process of broadcasting there happens none or
very little topology change and that the network remains connected. But in a
real scenario, this cannot always be guaranteed. This is what motivates our work.
We propose to study how well existing MANET broadcasting protocols behave
when under a realistic scenario. It is well known that wireless signal propaga-
tion is significantly affected by terrain, obstacles, unanticipated interference and
unpredictable fading, causing constant link failures and fluctuating communica-
tion channels [4,5]. Many other factors also impede correct message transmission
and reception as well, including hardware failure, battery exhaustion and node
mobility [6,7].

Previous studies on the impact of faults in broadcasting protocols have limited
themselves on analyzing the impact of mobility, collisions and network congestion
on the delivery rate (reliability) and on the number of gateway nodes (efficiency)
[2,8]. Although these three factors can be considered as faults, they are not
sufficient to denote all the possible fault scenarios that affect MANETs such as
link failures, temporary network partitions, topology change during broadcasts
and momentary node failures. Existing works consider fail-stop failures and most
broadcasting protocols are tolerant to these types of failures. Furthermore, this
failure model provides a simple abstraction for reasoning about failure-prone
environments and system reliability, but in real systems this is not always the
case. In our opinion it is the omission failure model1 that appropriately represents
real fault scenarios.

We propose to study six significant broadcasting protocols. The protocols are:
Simple Flooding, Dynamic Probabilistic Protocol [3], Wu and Li’s protocol’s
[9], Scalable Broadcasting Algorithm [10], Dominant Pruning [11] and Double-
Covered Broadcast [12]. For each one of these, we discuss their properties and
behaviors when taking reliability into consideration, and evaluate the impact of
omission faults on their performance. Our simulation studies consist of measuring
the reliability, the forwarding ratio and the end-to-end delay of the protocols
when 0%, 5%, 10%, 20%, 30% and 50% of the nodes fail using an omissive
failure model. As far as we know, no performance study about the impact of
omission faults in broadcasting protocols has ever been done.

Although previous simulated studies show that the broadcast protocols are
very mobile resilient and support well congestion and collisions, the study

1 In the omission model, nodes fails by crashing (prematurely halting) or by
sending/receiving only a subset of the messages that it actually attempts to
send/receive.

144 T.B. de Oliveira, V.F. Costa, and F. Greve

conducted here show that these protocols are not fault tolerant when omission
failures are taken into account. They are not capable of maintaining high deli-
very rate when placed in a real world scenario. The choice of the protocols leads
us to believe that this conclusion can be extended to most, if not all, broadcas-
ting protocols for MANETs which are based on the same reliability mechanisms.
Based on the study conducted, we investigate the source of existing broadcasting
problems and list the lessons learned as a step towards enhancing the capability
of broadcasting algorithms to deal with omission faults in scalable scenarios.

This paper is organized as follows. Section 2 describes the protocols in study.
Section 3 presents the simulation model, the results and lessons learned with the
study. Finally, Section 4 concludes the paper and presents future works.

2 Broadcasting in MANETs

Since MANETs are dynamic in nature, global information exchange are no longer
reasonable to expect and support. Nodes must then somehow limit themselves
to local information on topology in order to broadcast. Broadcasting protocols
must also be able to adapt to a wide range of MANETs including partition-less
scenarios, eventually disconnected scenarios (where partitions occur rarely but
reconnect quickly) and eventually connected scenarios (where partitions occur
most of the time, eventually reconnect, but quickly partition once again). Broad-
casting protocols are commonly classified based on their delivery guarantees, and
they can either be probabilistic or deterministic. Probabilistic broadcasting pro-
tocols are those that guarantee delivery with a certain probability. Probabilistic
protocols have less constraints and assumptions when compared to deterministic
protocols; are usually simpler to implement; and normally have little memory
requirements. Deterministic protocols on the other hand are those which assume
non-probabilistic delivery guarantees. Deterministic broadcasting protocols can
be further classified as either self-pruning or neighborhood designating. In self-
pruning algorithms a node that receives a message decides by itself whether it is
a forwarding node (also known as gateway). While in neighborhood designating
algorithms it is the sending node who selects the neighboring nodes that should
become gateways by piggy-backing this list in the broadcast message.

If the topology of the network is known and static, it is possible to calcu-
late the minimum connected dominating set (namely, MCDS) [13] in order to
select the set of gateways with which the smallest overhead of retransmissions
can achieve the highest delivery rate. A MCDS is the smallest set of forwarding
nodes such that every node in the set is connected, and all nodes which are not
in the set are within transmission range of at least one node in the MCDS. Once
found, the process of forwarding messages can be handled by the nodes within the
set. Unfortunately, the problem of finding a MCDS has been proven to be NP-
complete [3,13], thus the use of efficient approximation algorithms is necessary.
Among various alternative approximation approaches, many protocols utilizes 2-
hop neighborhood information to reduce redundant transmission. Updated local

On the Behavior of Broadcasting Protocols for MANETs 145

topology information comes at a small price since by periodically sending “Hello”
messages, nodes are able to construct a local view of their neighbors. But this
information can be imprecise and inconsistent, since between any two “Hello”
messages, a node may move, its neighbors may crash, a link may become unstable
or many other situations may arise.

2.1 Description of Chosen Protocols

In the following paragraphs we will describe each of the chosen protocols. Among
such a large number of existing broadcasting protocols for MANETs, it has been
no easy task to choose the few which will be used in our study. We later justify
our choices.

Simple Flooding. This is one of the simplest solutions to broadcasting. In this
approach every message received by a node is forwarded. In fact, flooding (and
all probabilistic protocols) are seen as an option to tackle the lack of determinism
of MANETs by applying a non-deterministic solution. While there exists many
papers that use this naive approach, it has been shown in [14,15] that it leads
to unreasonable high contention, collision and redundancy problems, which may
possibly interfere in the coverage (number of individual nodes that received a
specific message) and increase latency of the broadcast. This is known as the
broadcast storm problem [14]. Although for a more static scenario it is not re-
commended, many extremely mobile and dynamic scenarios can only rely on this
approach to broadcast. Actually, flooding is used by many existing broadcasting
protocols as a last resort when “all else fails”[16].

Dynamic Probabilistic Approach. In order to reduce the number of forward
nodes in the flooding approach, one alternative probabilistic solution proposed
in [14] is that each node be allowed to re-transmit based on a probability P .
Clearly, when P = 1 it will behave as flooding. Most approaches to probabilistic
broadcasting assume a fixed probability [2,14]. Depending on the value chosen a
high ratio of delivery can be obtained. Another option proposed in [14] was to
use a counter to keep track on the number of times a message has been recei-
ved. If after a random delay the counter equals an internal counter threshold,
it is assumed that the message has been received by all neighbors and the node
will not re-transmit. Thus, in a dense area of the network, some nodes will not
rebroadcast, while in sparse areas of the network, all nodes rebroadcast. Zhang
and Agrawal proposed the dynamic probabilistic approach [3] by combining the
probabilistic approach with the counter based approach [14] and adjusting the
value of P according to the density of the network. The re-transmission proba-
bility P is lowered whenever a node is positioned in a high-density area, while
it is raised when in sparser areas. Network density is estimated by using an in-
ternal counter that increases whenever a node detects a neighbor and decreases
periodically.

146 T.B. de Oliveira, V.F. Costa, and F. Greve

Wu and Li. Wu and Li [9] proposed a deterministic self-pruning algorithm to
calculate a set of forward nodes that form a connected dominating set. Their so-
lution reduces the number of forwarding nodes while maintaining a high delivery
ratio, and is scalable to many diverse network scenarios. Their marking process is
simple and relies on constant neighborhood set exchange between nodes: a node
is marked as a gateway if it has two neighbors that are not directly connected.
Clearly, after neighborhood set exchange, each node knows its 2-hop neighbors.
The algorithm uses a constant number of rounds to calculate the connected do-
minating set, which is directly related to the number of neighbors each node has.
Additionally, it also uses pruning rules to reduce even further the set of gateway
nodes. Their solution establishes priorities between nodes by using individual
node IDs and degree (number of 1-hop neighboring nodes). The priority values
are used in order to establish a total order among all nodes of the MANET.
Wu and Li´s protocol is well known and has been used and extended by many
others [8,17,18]. But these works where all inspired on reducing the number
of gateways nodes and on increasing broadcasting efficiency; not necessarily on
achieving high message delivery ratio. Simulation results clearly show that alt-
hough older, the original protocol still ensures higher message coverage [8]. This
is why we chose it over the newer protocols.

Scalable Broadcast Algorithm (SBA). The main idea of the deterministic
self-pruning scalable broadcasting algorithm proposed by Peng and Lu (namely,
SBA) [10] is that a node does not need to rebroadcast a message that already
has been received by neighboring nodes. In order to determine this, each node
needs to have knowledge of local 2-hop topology and of duplicate messages. Their
algorithm works in 2 steps: local neighborhood discovery and data broadcasting.
Local neighborhood discovery consists of exchanging neighborhood sets between
local nodes in order to learn 2-hop topology information (exactly like Wu and Li’s
protocol). For data broadcasting, whenever a node t receives a message m from
his neighbor v, before forwarding the message it checks which nodes belong to v’s
neighborhood. Since v transmitted, node t knows all the nodes that should have
received the message. By looking at its own neighborhood set, t can determine
if there are still any other neighbors which have not received m. Only when
there exists neighbors in this situation will t schedule a re-transmission. Instead
of immediately re-transmitting, the authors proposed a random backoff delay
based on the density of the neighborhood. Nodes with more neighbors will have
a higher priority and will rebroadcast earlier, thus raising the chances of a single
transmission reaching a greater number of nodes.

Dominant Pruning (DP). The dominant pruning algorithm (namely, DP)
[11] is a deterministic neighborhood designating broadcasting protocol that uses
2-hop neighborhood information to reduce redundant transmissions. In DP, whe-
never a node receives a message, it selects the smallest number of forwarding
nodes that can cover all nodes in a 2-hop distance. That is, when node j receives
a message from node k, it selects from the set N(j) the minimum number of

On the Behavior of Broadcasting Protocols for MANETs 147

nodes that should act as gateways to reach all nodes in N(N(j)). The DP pro-
tocol assumes that when node k first transmitted the message, all of its 1-hop
neighbors (which is the set N(k)) correctly received the message. It also assumes
that when node j forwards the message, all of its 1-hop neighbors (N(j)) will
correctly receive the message as well. Thus, node j will then just try to determine
N(N(j))−N(j)−N(k) (which supposedly will be the remaining nodes who, after
node j forwards, will not have received the message yet). By determining this,
it will then loop through N(j) and select the smallest number of nodes that are
able to guarantee coverage. These nodes will become forwarding nodes. Since it
is a neighborhood designating protocol, it piggybacks this list in the broadcast
message. Although there exist newer algorithms that extend DP, such as [19]
where simulation results show that neighborhood information is more effectively
used (lower number of gateway nodes) and even more redundant messages are
eliminated, they unfortunately seem to produce results which have lower delivery
rates. This obviously makes sense since it is the redundant messages that help
raise message coverage. Once again we prefer the original protocol with higher
coverage for this work.

Double-Covered Broadcast (DCB). Lou and Wu’s goal when proposing
the double-covered broadcasting protocol (namely, DCB) [12] was to reduce the
number of forwarding nodes (increase efficiency) without sacrificing the broad-
cast delivery ratio (reliability). It is classified as a neighborhood designating pro-
tocol, much like dominant pruning. By selecting a set of gateway nodes where
not only every 2-hop node is covered, but also where all 1-hop nodes are covered
by at least 2 forwarding neighbors (the sender itself and one of the selected ga-
teway nodes), it benefits from the broadcast redundancy to improve reliability.
Additionally, in DCB the re-transmission of the message by the gateways node
serves as an ack of correct message reception to the original sending node. This
scheme avoids the ACK implosion problem [20]. The sender will wait during a
pre-determined time to overhear the re-transmissions by every chosen gateway
node. If it fails to detect all of the re-transmissions it assumes that a trans-
mission failure occurred. The sender will keep re-sending the message until all
forward nodes have re-transmitted or until a threshold is reached. By double-
covering, DCB assumes that at least two transmissions will reach the nodes,
therefore this redundancy prevents a single transmission error from interfering
on message transmission and reception.

Justifications. Simple flooding and Dynamic Probabilistic protocol are, in our
opinion, good representations of the probabilistic approach and were chosen for
their high redundancy. Simple flooding seemed a natural choice for its simplicity
while Dynamic Probabilistic for its novel approach for dynamically setting the
re-broadcast probability. As representatives of self-pruning protocols we chose
Wu and Li’s protocol and Scalable Broadcasting Algorithm for their efficient use
of neighborhood information and for their good simulation results (regarding
message delivery rate). Dominant Pruning was chosen for similar reasons, but

148 T.B. de Oliveira, V.F. Costa, and F. Greve

rather as the representative of neighborhood designating protocols. The Double-
Covered Broadcast protocol can be considered a reliable broadcasting since it
tries to ensure message delivery beyond best-effort guarantees. It was chosen not
only for its’ novelty, but also for applying multiple reliability mechanisms.

3 Performance Evaluation

In order to evaluate the performance and behavior of the broadcasting protocols
when in an omission-fault injected environment, we ran simulations using the
NS-2 network simulator [21].

3.1 Simulation Model

The Scenario. Motivated by findings that simplistic mobility and radio propa-
gation models had a significant impact on the behavior of MANET broadcasting
protocols [5] and, in order to attest that our simulation results were valid, we
chose more realistic parameters with which to simulate. The simulation parame-
ters are listed in Table 1. During the simulation the nodes were confined within
1300 × 1300 m2. Each of them had a constant transmission range of 250 m.
For the radio propagation model we used the Two-Ray Ground Reflection mo-
del as implemented in the simulator, while the MAC layer followed the IEEE
802.11 specification with no RTS/CTS/ACK for all message transmissions. We
used BonnMotion v1.3a [22] as our mobility scenario generator. The movement
pattern of each node follows the Gauss-Markov mobility model as defined by
BonnMotion. Up to an 18 second pause time can occur before a node moves to
a new location.

To allow for proper initialization and settling, we allow 3000 seconds of node
movement without any kind of message exchange. Each simulation then ran for a
total of 500 seconds. In the first 100 seconds only “Hello” type messages are sent
to allow for updated local topology information to be exchanged throughout the
network. It is during the next 100 seconds that we configure nodes to broadcast

Table 1. Simulation Parameters

Simulation Parameters

Simulator NS-2 (2.30)

Network Area 1300 × 1300 m2

Transmission Range 250 m

Simulation Time 500 s

of Trials 20

Mobility Model Gauss-Markov

Broadcast Rate 10 msg/s

Node Speed 1 m/s

Confidence Interval 95 %

On the Behavior of Broadcasting Protocols for MANETs 149

data messages as well. For the last 300 seconds no new data messages are broad-
casted, but nodes still exchange “Hello” messages, retransmit buffered messages
as needed and move. This is to allow for proper message delivery termination,
such as unsent queued messages, as well as possible re-transmission attempts.
Each simulation was repeated 20 times to achieve at least a 95% confidence
interval for the results.

Values used for the simulation such as broadcast rate and node speed were de-
termined based on results obtained through a previous work [23]. Although well
known that mobility is a major cause of delivery failure [19,24,25], in the cited
work node speeds where varied between 1m/s and 160m/s. The choice of 1m/s
reduces the negative effects of mobility on the protocols. In the same manner,
the broadcast rate value of 10 packets/s was determined after simulation runs
varying between 1 packet/s and 111 packets/s. This value was chosen since,
on average, even when taking node failure in consideration, had the best over-
all effect on every metric measured and permitted the most stable and reliable
communication. We refer the reader to [23] for more details.

The Metrics. We have defined three metrics with which we have divided the
simulation studies. The metrics are reliability, forwarding ratio and end-to-end
delay. Since our main priority is analyzing the reliability of the protocols, both
energy concerns and protocol overhead-related metrics (such as “hello” message
exchange) were not taken into consideration. All of the values listed below are
available through logs generated by the simulator.

• Reliability. A high delivery ratio is the primary goal of any broadcast protocol,
thus reliability is the most significant metric. It will demonstrate not only if the
broadcast protocol in question does what it is supposed to do, but will help to
show how each protocol deals with failure. Since the number of nodes partici-
pating in the simulation is known by the simulator, we are able to extract and
analyze the percentage of nodes that received any given message.
• Forwarding Ratio. Protocol efficiency is given by the number of gateway nodes
that re-transmit and take an active role in the broadcast. Therefore, an efficient
broadcast protocol is one that uses the lowest number of gateways to reach the
highest number of nodes, which in turn will lead to a lower number of packets
and consequently to less congestion and collision. But with the induced failure
of nodes, efficiency is better measured as a ratio of the number of nodes that
received a packet to the number of nodes that acted as gateways. We denominate
this the forwarding ratio.
• End-to-End Delay. Finally, end-to-end delay is a metric normally used in conjunc-
tion with the others to help understand how congestion has affected the protocols,
since it measures how long it takes any given packet to reach every node.

Fault Model. Most deterministic broadcasting protocols are resilient to fail-
stop failures due to the fact that these protocols use constant neighborhood set
exchange between nodes. Thus, a faulty node can only interfere for a short time

150 T.B. de Oliveira, V.F. Costa, and F. Greve

during the broadcasting process. Shortly after the failure, all neighboring nodes
will detect the fault and in future broadcasts, the node (which has now crashed),
will no longer be involved in any broadcast. Using a fail-stop failure model is, in
our opinion, inadequate to analyze faults when simulating deterministic broad-
casting protocols. Thus, unlike any other work we have seen before, we have
implemented an omission fault model in order to simulate a real world scena-
rio characterized by interference introduced by the environment, link instability
and transmission failure due to node movement. This model is also applicable
to probabilistic broadcasting protocols.

In our implementation, during each one of the runs, an uniformly random
selected set of nodes will fail to send and receive any kind of messages for 10
seconds. When this period is over, a new group of randomly selected nodes will
be chosen to fail. The exact number of nodes chosen depends on the percentage
of failed nodes which can be 0% (failure free), 5%, 10%, 20%, 30% and 50%.
When defining this fault model, we had in mind the importance of randomly
choosing faulty nodes, instead of selecting a static groups of nodes. But, since
the number of failures is fixed, to help better spread the failure and to represent
omission faults such as the ones listed above, we periodically pick another group
of nodes throughout the network.

This implements an omission fault model and also helps to stress those pro-
tocols that assume a correct behavior on the reception and transmission during
a broadcast, specially by some special set of nodes such as the gateway nodes.
On the other hand, this fault model will favor those protocols that use addi-
tional mechanisms to properly identify message reception by neighboring nodes.
It is important to note that, in parallel with the omission faults simulated by
our model, other failures still keep occurring during the execution. For example,
transmitted messages frequently are dropped since, after all, the radio propaga-
tion model used (in NS-2) allows for transmission errors. Nodes are also mobile,
so they may even move out of transmission range.

In order to correctly compare the protocols, all were simulated under the same
set of mobility and fault patterns, including the exact same broadcast message
sending times.

3.2 Simulation Results

We present now the simulation results for each of the defined metric. We indi-
vidually compared each of the protocols with themselves in order to be able to
identify how each of them behaved when under different failure scenarios, ran-
ging from 0% to 50%. Then we compared the protocols with each other under
the same scenarios of faults. Note that all specific values used in the next para-
graphs are mean values, but the results in the graphs have confidence intervals
of 95% plotted as well, although these are extremely small and when plotted on
a full scale graph, can hardly be seen.

Reliability Results. Figure 1 clearly shows what was expected: the reliability
of all broadcasting protocols simulated lowers as the number of node failure

On the Behavior of Broadcasting Protocols for MANETs 151

(a) Simple Flooding (b) Dynamic Probabilistic Broadcasting

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

(c) Wu and Li (d) Scalable Broadcasting Algorithm (SBA)

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

(e) Dominant Pruning (DP) (f) Double-Covered Broadcasting (DCB)

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

Fig. 1. The Effects of Node Failure on Reliability (Individual View)

increases. This conclusion is true to both deterministic and probabilistic approa-
ches. In no scenario was any protocol able to deliver messages to more than
80% of the network. Flooding and SBA where the ones with the highest delivery
ratios, reaching almost 80% of the network on a fail-free run (0% of node failure)
in a dense network scenario. Even when failure rates raised to 30% both protocols
remained pretty stable, decreasing an average of 5% in delivery rates. On the
other hand, in the worst-case scenario, where 50% of the nodes failed, even in a
dense network the delivery ratio barely reached 57%. In Figure 2 we can realize
how similar both protocols behave. In simple flooding, both reliability and fault-
tolerance is assumed because of the high redundancy [26]. Unfortunately, this
does not guarantee message delivery to all nodes and only relies on the inherent
redundancy to obtain coverage. SBA’s drawback is that it requires up-to-date

152 T.B. de Oliveira, V.F. Costa, and F. Greve

(a) 0% scenario (b) 20% scenario

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

(c) 30% scenario (d) 50% scenario

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

Fig. 2. The Effects of Node Failure on Reliability (Comparison View)

neighborhood information. Without it, unfortunately, a node that is receiving
a message will erroneously calculate its forward status. Furthermore, a node
has absolutely no guarantees that the same message correctly arrived at its
neighbors, and therefore cannot just assume correct reception.

Dominant Pruning, Double-Covered and Wu and Li’s protocols all had similar
results regarding message delivery when in a dense fail-free network (with 100
nodes). DP reached 66% of the nodes, DCB 61% and Wu 56%. But, when failures
were introduced to the simulation, both DP and DCB were rapidly impacted by
node failures, delivering messages to less than 50% of the network with as little
as 20% node failure, and barely reaching 41% when 30% of the nodes failed. In
the worst case (50% failure) neither were able to reach more than 29% of the
network. Wu and Li’s, on the other hand, was capable of delivering messages
to 56% of the network as long as node failures remained below 10%. This value
decreases to about 45% when node failures increase to 30%. The delivery ratio
only drops to 33% when in a worst-case scenario. We can appreciate direct
comparisons through the graphs of Figure 2.

The authors of DP inherently assume that no errors occur during message
transmission, by accepting that when a node transmits a message, all of its 1-
hop neighbors correctly received the message and that, when a neighboring node
forwards the message, all of its 1-hop neighbors correctly receive the message as
well. But, in a fault-enabled environment this is, most often, not the case and
simulations result corroborate with this as perceptible consequences to message

On the Behavior of Broadcasting Protocols for MANETs 153

delivery can be seen. Double-Covered’s approach to broadcasting, unfortunately,
relies on the reception of the acknowledgment by the sender node, but this does
not ensure that the 2-hop neighbors received the message as well. Both the
exposed terminal problem – where an outgoing transmission collides with an
incoming transmission – and the hidden terminal problem – where two incoming
transmissions collide with one another – can defeat the reliability mechanism
inherent in DCB.

According to Wu and Li, in their protocol the resultant dominating set inclu-
des nodes of the shortest path. But, in an ad hoc environment, where the nodes
are free to move, the shortest path tends to be the most unstable and prone
to link failure [27]. This is not taken into consideration and no guarantees are
ever made that a gateway is forwarding the messages nor is the delivery of any
message ensured.

Dynamic Probabilistic delivery ratios’ had the lowest values of all protocols,
and were all between 25% and 17%. The highest value when in a fail-free sce-
nario, and the lowest in the worst-case. It is assumed by the protocol that the
network topology does not change drastically, so that the probability calculated
can be a reasonable approximation of the optional probability for the next packet
transmission. This, unfortunately, is only the case for networks where movement
speed is low. Furthermore, while the probability of broadcasting is dynamically
adjusted, it becomes dependent upon other fixed parameters that need also be
carefully selected (like for example, the exact value of timeouts).

Forwarding Ratio Results. As already stated, forwarding ratio is defined as a
ratio of the number of nodes that received a packet (#receptions) to the number
of nodes that acted as gateways (#gateways). That is, #gateways/#receptions.
The higher the forwarding ratio, the greater the number of nodes that had
to forward the message. A low forwarding ratio then means that the protocol
is efficient, since it uses the lowest number of gateways to reach the highest
number of nodes. However, this does not mean that an efficient protocol is also
reliable. In Figure 3 we can note how the forwarding ratio of all protocols is
lowered as failures are introduced to the scenarios. That is, as more nodes fail,
the smaller the number of nodes involved in the forwarding process. Flooding
is the most inefficient protocol, as it needs to involve almost all receiving nodes
in the forwarding process. Note how in the fail-free scenario it involves 100%
of the nodes that receive a message in the forwarding process. Double-Covered
Broadcasting also involves a large number of nodes in the forwarding process,
and while it is more efficient than flooding, it is not much. Dynamic probabilistic
obtains higher efficiency, since it compromises at most 50% of the nodes, but this
drops to as low as 25% when in a 50% failure scenario. In an increasing scale,
dominant pruning is the next most efficient protocol, as it also maintains node
participation in the 25% − 40% range, but unlike dynamic probabilistic, this
happens most of the time. In the worst-case scenario (50% node failure) this
lowers to 18%. Both Wu and Li’s protocol, as well as SBA, have high efficiency
values when in a sparse and fault-enabled scenario, involving between 16%−25%
of the network on average, but reaching values as low as 10%. But similarities

154 T.B. de Oliveira, V.F. Costa, and F. Greve

(a) Simple Flooding (b) Dynamic Probabilistic Broadcasting

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

(c) Wu and Li (d) Scalable Broadcasting Algorithm (SBA)

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

(e) Dominant Pruning (DP) (f) Double-Covered Broadcasting (DCB)

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 00%
 05%
 10%
 20%
 30%
 50%

Fig. 3. The Effects of Node Failure on Forwarding Ratio (Individual View)

stop there. SBA’s efficiency then drops sharply, involving between 60%−80% of
the network. While Wu and Li’s behavior settle between 25% − 40%. Through
Figure 4 we are able to directly compare the protocols.

End-to-End Delay Results. All protocols, as can be seen in Figure 5, have a
slight drop in the end-to-end delay as more nodes failed. This was the expected
behavior since the node re-transmission activity ceased on all faulty nodes. Over-
all, DCB had the highest end-to-end delay, mostly due to the re-transmission
attempts when no acknowledgement is overheard. SBA’s backoff delay (to re-
duce congestion and collisions) produced a longer overall delay to transmit
messages. Flooding, on the other hand, causes the broadcast storm problem
which also increases latency of the broadcast. The remaining protocols all had

On the Behavior of Broadcasting Protocols for MANETs 155

(a) 0% scenario (b) 20% scenario

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

(c) 30% scenario (d) 50% scenario

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

F
o

rw
a

rd
in

g
 R

a
ti
o

 (
%

)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

Fig. 4. The Effects of Node Failure on Forwarding Ratio (Comparison View)

low delays, with both Wu and Li and DP needing some time to update 2-hop
neighborhood information, while dynamic probabilistic’s simpler approach to
broadcasting maintains latency to a minimum.

3.3 Lessons Learned

The biggest challenge behind broadcasting in MANETs still lies in finding the ba-
lance between message overhead (i.e. redundancy) and reliability. On one hand,
a large number of re-transmissions will result in a larger number of nodes rea-
ched, but so will the chances of collisions and possibly transmission delays rise
as well. On the other hand, when too small of a number of re-transmissions is
chosen there is a potential risk of not all nodes being reached. The results here
presented allows us to list a few lessons learned:

1. While probabilistic protocols are seen as a way to handle the lack of de-
terminism of MANETs, improperly adjusting this class of protocols in order to
inhibit redundant retransmissions can cause more loss than gains. While floo-
ding had high delivery ratios, dynamic probabilistic broadcasts hardly reached
the intended nodes.

2. Most deterministic algorithms rely on correctly updated neighborhood
knowledge in order to calculate forward status. But in a fail-prone scenario this
information may be misleading. This seems to affect much more neighborhood
designating protocols than self-prunning ones.

156 T.B. de Oliveira, V.F. Costa, and F. Greve

(a) 0% scenario (b) 20% scenario

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60 70 80 90 100

E
n

d
-t

o
-E

n
d

 D
e

la
y
 (

s
)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60 70 80 90 100

E
n

d
-t

o
-E

n
d

 D
e

la
y
 (

s
)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

(c) 30% scenario (d) 50% scenario

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60 70 80 90 100

E
n

d
-t

o
-E

n
d

 D
e

la
y
 (

s
)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 20 30 40 50 60 70 80 90 100

E
n

d
-t

o
-E

n
d

 D
e

la
y
 (

s
)

Number of Nodes

 dcb
 dp

 flood
 prob
 sba

 wu-li

Fig. 5. The Effects of Node Failure on End-to-End Delay (Comparison View)

3. Additional mechanisms to properly identify message reception is recommen-
ded to determine if all 1-hop and 2-hop neighbors received a message. Nodes must
not just assume correct reception. While simply overhearing a retransmission by
a neighboring node is one possible solution, its use should be limited to self-
pruning algorithms where more nodes can possibly detect incorrect forwarding-
related decisions.

4. Most protocols handled failures up to 10% of the network without a large
impact on delivery rates. This information should be used by algorithms, espe-
cially when adjusting dynamic thresholds.

5. For reliability to be ensured, redundancy is a must. Simulations result
indicate that when 60% of the network received a message, at least 25% of the
network acted as gateways. And to reach 80% of the network, at least 60% of
the nodes forwarded the message. Efficiency, albeit important, must not be the
primary focus of a broadcasting protocol that intends to reach all correct nodes
of the network.

4 Conclusion

In order to evaluate the impact of faults on the performance of significant broad-
casting protocols, we have conducted simulations under various network scenarios
and situations. The simulation studies consisted of measuring the reliability, the
forwarding ratio and the end-to-end delay of the protocols when in an omission

On the Behavior of Broadcasting Protocols for MANETs 157

fault injected environment. It is interesting to note that the protocols are unable
to cope well with failures under the realistic model proposed. Regarding message
delivery ratio, all protocols suffer a somewhat performance degradation, but a few
reach levels of coverage that is unacceptable for broadcasting protocols. Based on
the study conducted, we investigated the source of existing broadcasting problems
and list the lessons learned as a step towards enhancing the capability of broad-
casting algorithms to deal with omission faults in scalable scenarios.

Our future work includes researching possible extensions to broadcasting al-
gorithms in order to provide efficient mechanisms to deal with faults. We also
plan on extending our fault model to reflect an even more realistic environment.
The current definition of our fault model takes into consideration the importance
of randomly choosing faulty nodes throughout the network and represent failu-
res characterized by interference introduced by the environment, link instability
and transmission failure due to node movement. Nevertheless, it still represents
a rather peculiar failure model where a certain number of nodes fail (and then
start working correctly) at exactly the same time. Despite this fact, the results
presented in this work are valid since they still model a scenario much more
realistic than the simpler fail-stop model.

Acknowledgement

The authors would like to thank all the anonymous referees whose insightful
comments helped us to improve the paper presentation.

References

1. Ray, S., Carruthers, J., Starobinski, D.: Evaluation of the masked node problem in
ad hoc wireless lans. IEEE Trans. on Mobile Computing 4(5), 430–442 (2005)

2. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proc. of the 3rd ACM Int. Symp. on Mob. Ad Hoc Networking &
Computing, pp. 194–205. ACM Press, New York (2002)

3. Zhang, Q., Agrawal, D.P.: Dynamic probabilistic broadcasting in manets. Journal
of Parallel and Distributed Computing 65(2), 220–233 (2005)

4. Basile, C., Killijian, M., Powell, D.: A survey of dependability issues in mobile
wireless networks. Technical report, LAAS CNRS Toulouse, France (2003)

5. Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., Elliott, C.: Experimental
evaluation of wireless simulation assumptions. In: Proc. of the 7th ACM Int. Symp.
on Modeling, Snalysis and Simulation of Wireless and Mobile Systems (MSWiM
’04), pp. 78–82. ACM Press, New York, NY, USA (2004)

6. Huang, Q., Julien, C., Roman, G.: Relying on safe distance to achieve strong par-
tionable group membership in ad hoc networks. IEEE Transactions on Mobile
Computing 3(2), 192–205 (2004)

7. Stankovic, J.A., Abdelzaher, T., Lu, C., Sha, L., Hou, J.: Real-time communication
and coordination in embedded sensor networks. In: Proceedings of the IEEE, IEEE
Computer Society Press, Los Alamitos (2003)

158 T.B. de Oliveira, V.F. Costa, and F. Greve

8. Dai, F., Wu, J.: Performance analysis of broadcast protocols in ad hoc net-
works based on self-prunning. IEEE Transactions on Parallel and Distributed Sys-
tems 15(11), 1027–1040 (2004)

9. Wu, J., Li, H.: On calculating connected dominating set for efficient routing in ad
hoc wireless networks. In: DIALM ’99: Proc. of the 3rd Int. Workshop on Discrete
algorithms and Methods for Mobile Computing and Comm., pp. 7–14. ACM Press,
New York, NY, USA (1999)

10. Peng, W., Lu, X.-C.: On the reduction of broadcast redundancy in mobile ad hoc
networks. In: Proc. 1st ACM international symp. on Mobile ad hoc networking &
computing (Mobihoc), pp. 129–130. IEEE Press, Piscataway, NJ, USA (2000)

11. Lim, H., Kim, C.: Flooding in wireless ad hoc networks. Computer Comm. 24(3–4),
353–363 (2001)

12. Lou, W., Wu, J.: Toward broadcast reliability in mobile ad hoc networks with
double coverage. IEEE Trans. on Mobile Computing 6(2), 148–163 (2007)

13. Lim, H., Kim, C.: Multicast tree construction and flooding in wireless ad hoc
networks. In: Proc. of the 3rd ACM Int. Workshop on Modeling, Analysis and
Simul. of Wireless And Mob. Sys (MSWIM ’00), pp. 61–68. ACM Press, New York
(2000)

14. Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., Sheu, J.-P.: The broadcast storm problem in a
mobile ad hoc network. In: Proc. 5th ACM/IEEE Int. Conf. on Mobile Computing
and Networking, pp. 151–162. ACM Press, New York (1999)

15. Tseng, Y.-C., Ni, S.-Y., Shih, E.-Y.: Adaptive approaches to relieving broadcast
storms in a wireless multihop mobile ad hoc network. IEEE Transactions on Com-
puters 52(5), 545–557 (2003)

16. Obraczka, K., Viswanath, K., Tsudik, G.: Flooding for reliable multicast in multi-
hop ad hoc networks. Wireless Networks 7(6), 627–634 (2001)

17. Dai, F., Wu, J.: Distributed dominant pruning in ad hoc networks. In: Proceedings
of the IEEE 2003 International Conference on Communications (ICC 2003), vol. 1,
pp. 353–357. IEEE Computer Society Press, Los Alamitos (2003)

18. Wu, J., Dai, F.: A generic distributed broadcast scheme in ad hoc wireless networks.
IEEE Trans. Computers 53(10), 1343–1354 (2004)

19. Lou, W., Wu, J.: On reducing broadcast redundancy in ad hoc wireless networks.
IEEE Trans. on Mobile Computing 1(2), 111–123 (2002)

20. Impett, M., Corson, M.S., Park, V.: A receiver-oriented approach to reliable broad-
cast in ad hoc networks. In: Proc. of Wireless Comm. and Networking Conf
(WCNC), September 2000, vol. 1, pp. 117–122 (2000)

21. NS-2: The network simulator (2007), http://www.isi.edu/nsnam/ns/

22. de Waal, C.: A mobility scenario generation and analysis tool (2007),
www.informatik.uni-bonn.de/IV/BonnMotion/

23. de Oliveira, T.B., Costa, V.F., Greve, F., Schnitman, L.: Evaluating the impact of
faults on broadcasting protocols for manets. In: VII Workshop on Fault-Tolerant
Computing, with (SBRC) Symp. on Computer Networks, Curitiba, Brazil, May
2006, pp. 49–60 (2006)

24. Wu, J., Dai, F.: Efficient broadcasting with guaranteed coverage in mobile ad hoc
networks. IEEE Transactions on Mobile Computing 4(2), 259–270 (2005)

http://www.isi.edu/nsnam/ns/
www.informatik.uni-bonn.de/IV/BonnMotion/

On the Behavior of Broadcasting Protocols for MANETs 159

25. Pagani, E., Rossi, G.P.: Providing reliable and fault tolerant broadcast delivery in
mobile ad-hoc networks. Mob. Netw. Appl. 4(3), 175–192 (1999)

26. Kermarrec, A.-M., Massoulié, L., Ganesh, A.J.: Probabilistic reliable dissemination
in large-scale systems. IEEE Trans. Parallel Distrib. Syst. 14(3), 248–258 (2003)

27. Lim, G., Shin, K., Lee, S., Yoon, H., Ma, J.S.: Link stability and route lifetime in
ad-hoc wireless networks. In: Proc. of the 2002 Int. Conf. on Parallel Processing
Workshops (ICPPW ’02), Washington, DC, USA, p. 116. IEEE Computer Society
Press, Los Alamitos (2002)

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 160–169, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Failure Boundedness in Discrete Applications

João Muranho1, Paula Prata1, Mário Zenha-Rela2, and João Gabriel Silva2

1 Department of Informatics, Universidade da Beira Interior,
P 6201-001 Covilhã, Portugal
2 University of Coimbra (UC),

CISUC, Department of Informatics Engineering, P 3030-290 Coimbra, Portugal
{muranho,pprata}@di.ubi.pt, {mzrela,jgabriel}@dei.uc.pt

Abstract. Computer control of discrete applications present a challenging
dependability problem since any wrong output may lead the system to a
completely anomalous state. This is in contrast with continuous feedback
systems where wrong outputs can only gradually deviate the system under
control from its intended set point. Transient errors may even be filtered by the
latency inherent to the physical application. In this paper we extend our
previous experimental research on the use of the fail-bounded model in
continuous feedback systems into discrete control applications in order to
evaluate whether it could be applied to this kind of problems. The reset-driven
approach was used as the basic error detection and recovery mechanism
complemented by assertions based on the Petri Net modeling of the problem,
thus taking advantage of the discrete nature of the applications. The well-known
semaphore control problem is used as testbed for experimental evaluation by
fault-injection in the controller. The main contribution of this paper is to present
experimental data showing that effectively the fail-bounded model can be
applied to discrete applications whenever a continuous physical system exists in
the control loop.

Keywords: Failure avoidance, Discrete applications, Fail-bounded model, Petri
nets, Experimental Dependability Evaluation.

1 Introduction

The control of discrete applications is one of the most common uses of computer
control in industry. Applications range from a multitude of manufacturing equipment
to specialized markets such as traffic light controllers. There are specific tools and
techniques to guarantee an adequate description, modeling and development of
discrete control applications since they cannot be properly handled by the common
approaches used in continuous feedback control systems (e.g. PID controllers). The
modeling of such systems, namely the most critical ones, is often based on Petri Nets
due to its boundedness, reachability and liveness properties that are well adapted to
this type of real world problems. Of particular interest for this class of problems are
timed and stochastic Petri Nets[1]. Such systems are mostly based on state transitions,
so that they expect the occurrence of events from sensors (e.g. an empty bottle entered

 Failure Boundedness in Discrete Applications 161

into a filling area, a button pressed), determine the following state and generate the
related output (e.g. turn on/off the filling valve, turn on/off a red light).

In such applications fault tolerance is normally considered to be an hardware issue,
so control engineers simply assume that controllers don't fail. To meet these
expectations, a common approach is to use fail-silent controllers, which either
produce correct results or do not output any value at all [2]. Since standard simplex
hardware fails far from silently [3], such systems are usually built by pairing two
computers and continuously comparing their outputs. In fields such as avionics,
nuclear power plants, medical life support systems and similar critical applications the
cost of that replication may be acceptable but there is a very large number of
applications where such redundancy is not economically viable. For that reason, most
low cost Programmable Logic Controllers (PLCs) use a conservative fault avoidance
design approach, rather than dedicated fault tolerance. Typically, the only standard
provisions for error detection in such systems are a watchdog timer that detects
crashes and resets the processor, and periodic self-check routines that detect
permanent faults. No guarantees are given as to what happens when these
mechanisms are not effective, which is the case of transient faults. This is unfortunate,
because transients generally occur much more frequently than permanent faults, due
to electromagnetic interference, power brownouts, or other environmental
disturbances. Although significant variations result from different designs and
operating conditions, in average about 80% of hardware faults are transient [4], and as
VLSI implementations use smaller geometries and lower power levels, the importance
of transients increases.

To address this problem in [5],[6] it was shown that feedback algorithms can
compensate for many computer malfunctions, not just disturbances in the controlled
system. We have shown that the fail-silent model may be inadequate since it would
flag as failures many situations where the system in fact does not suffer any negative
impact at all. The point is that the fail-silent model lacks the notion of time –a single
erroneous controller output is not significant, only a sequence of erroneous outputs is–
and fails to take into account the fact that the natural inertia of the controlled system
filters out short lived disturbances. Those observations confirm a well-known concept
in industry, that of grace-time [7] (the time that an application can run without
control, exhibiting irrelevant or even null consequences). In our research we claim
that the Fail-Bounded model is more appropriate to describe the behavior of those
systems than the Fail-Silent model. As introduced in [8], a system is said to be
Fail-Bounded if it either:

i. Produces correct outputs;
ii. Stops producing outputs after detecting some error;
iii. Produces wrong outputs, but these are not arbitrary, the deviation from the

correct output having an upper bound.

That upper bound can be enforced by means of assertions that, if implemented
according the Robust Assertions method [9] guarantee with very high probability that
the Fail-Bounded model is satisfied.

In this paper, we extend our previous research into discrete applications. The major
problem in this kind of systems is that while in continuous feedback control an error
may generate a gradual deviation from the correct output, in discrete systems errors

162 J. Muranho et al.

may lead to state transitions completely distinct from what would be the correct path.
The fundamental observation here is that while the erroneous output may not be
bounded in the value domain since the state reached may be definitely erroneous, it
may be bounded in the time domain, thus if there is a physical (continuous) system in
the control loop and a correct output is resumed within the application's grace time,
the whole system can benefit from the application's physical inertia (i.e. we must
break the dichotomy controller/controlled and consider the system as a whole.

A most relevant point is that if the system crashes this time-boundedness cannot be
guaranteed. Thus, the effective adoption of the fail-bounded model in discrete systems
requires a dedicated effort to avoid the occurrence of system crashes and/or recover
from them on time to prevent the violation of the application's grace-time.

The experimental evaluation described in this paper was performed by means of
software fault-injection, using RT-Xception [10], a real-time version of the Xception
tool described in [11], which is able to emulate hardware transients, introducing a
predictable and negligible overhead. Faults were inserted in the controller computer
running a traffic semaphore control algorithm, a life critical discrete application.

The paper is organized as follows: in the next section we present the system model
and how the fail-bounded model can be applied to discrete applications. The reset-
driven fault tolerance technique is described as it is used as the error detection and
recovery mechanism to support the fail-bounded approach. Since discrete applications
have specific properties that differentiate it from continuous applications, assertions
derived from these properties are also used for error detection. In section 3 the testbed
and the target application is described. In section 4 we present and discuss the
experimental observations. Section 5 closes the paper with a discussion on the most
relevant observations and conclusions.

2 System Model

2.1 Fail-Boundedness and Fault-Tolerance

In a continuous system the state-space variables assume values in a metric space. On
the contrary, in a discrete system the state variables assume values in a countable
space. From the controller system design perspective a continuous system follows a
continuous smooth trajectory, and a feedback control action is applied periodically. In
a discrete system we don’t have such smoothness to follow and the control actions
often don’t have such regularity even if the control action is a numeric value.

For the evaluation of the effectiveness of using the fail-bounded model in discrete
applications we assume that such systems can be modeled as a state-machine with
event-driven state transitions such that the correct state sequence is derived from the
application model: events arrive, a new state is computed, and the related outputs
updated. The physical system under test (SUT) is a non-replicated (simplex) computer
controlling a physical system through its sensors and actuators.

In the experimental evaluation presented in this paper the application is the well-
known traffic-light control. The controlled system is another computer running a
model of the application (traffic lights), in fact collecting the SUT behavior. For
simplicity sake we considered only the occurrence of single transient faults.

 Failure Boundedness in Discrete Applications 163

Fig. 1. Controller computer and controlled system (traffic light)

Nevertheless, a transient fault may cause long-lasting or even permanent errors if it
affects the controller's internal state.

The assertions supporting the fail-bounded approach evaluated in this paper are
based on state awareness: when some erroneous state is detected the controller 'falls
back' and corrects the erroneous output by resuming its correct transition path. While
this may be an impossibility in some applications, any engineer in the field is well
aware that the physical world is intrinsically continuous, and resilient to failure: thus,
even if a process is described in state-transition terms, if there is a physical
(continuous) system in the control loop we can always associate a cost to an
erroneous state transition and 'fall back'. If the recovery time is short enough the real
world application may not even be aware of the erroneous transition (e.g. the
conveyor belt will not stop, the gate in the production line will not turn left, the green
light on a semaphore will not turn on,...). This a fundamental requirement: the discrete
application in the control loop must have a quantifiable grace time. Even in a life
critical application such as traffic light control this time is defined as 80 milliseconds,
the time to conscious reaction to a visual stimulus.

Using the available idle time of the controller computer, a model the controlled
system based on its state transitions is checked for correctness. It takes into account
the system's present state, previous state and sequence of input events. If an erroneous
transition is detected the system just corrects its output. This type of error detection
and recovery can be obtained either by re-execution on the same hardware (if only
transient faults are considered) or by substitution by a backup controller (if additional
tolerance to permanent faults is envisaged).

The proper modeling of a discrete-state application involves the use of a state-
machine approach, in some cases based on the corresponding Petri Net. We adopted
this model not only for the development of the solution, but also as a tool to support
error detection. By using the state transition model we can determine the of correct
path. Thus, as a transition is performed, its validity is checked. Notice that this is a
means of using the very effective technique of control flow checking [12] but at a
more abstract level, rather than at the basic assembly-block level.

As shell be shown later, we also used reset-driven fault-tolerance [13], an error
removal approach based on resetting systematically the system between two
consecutive outputs, so that any latent error is flushed by the programmed reset.

164 J. Muranho et al.

3 Experimental Setup

3.1 The Control Application

The system to be controlled, is an intersection of two one-way roads without
pedestrian passages. The right to access the shared area is controlled by a timed
controller. This controller implements only one time plan, and cyclically displays the
light sequence ...→GR →YR →RR →RG →RY →RR →... (Green/Yellow/Red).
The low-level meaning of these states can be found in Table 1 which also shows the
nominal time and design time tolerance for each lamp set. This time tolerance for the
transition to a new lamp set was defined as 80 milliseconds, a typical figure.

Table 1. Nominal time for each lamp set stay on

Lamps On GR YR RR RG RY RR
Binary 001 100 010 100 100 100 100 001 100 010 100 100
Hex 000c 0014 0024 0021 0022 0024
Decimal 12 20 36 33 34 36
Time (ms) 1500 1000 500 1500 1000 500
Tolerance (ms) 80 80 80 80 80 80

The traffic light system is a discrete application where the controller outputs are

integer values representing the bit patterns of the target signals (e.g. for a pedestrian
signal the control action ‘10’ means power the “walk” bulb and cut the power to the
“don’t walk” bulb). The controller mission is to send meaningful messages to the
traffic signal control equipment in order to regulate the system users. Despite being a
discrete application, the whole system has some components that react in a continuous
way: the main sources of grace-time are the electrical equipment (a tungsten-filament
bulb lamp takes approximately 50-70 milliseconds to generate light) and the users
(pedestrians and drivers). The human being takes approximately 100 milliseconds to
detect a stimulus (lamp energized) and conscious reaction to them [14]. The U.S.A.
traffic controller’s models NEMA and Model 170 [15] also assume time deviations in
this order of magnitude (100 ms). So, if the controller is fast enough we can correct a
potential wrong control action without impact in the overall system. It is the presence
of these continuous elements that allow the implementation of the fail-bounded
approach to fault-tolerance since they provide the grace-time to the system.

3.2 System Behavior Classification

In our testbed the controller outputs are generated with the execution of a Petri net
with timed transitions. Each Petri net place has associated one control code. A
transition is enabled when its input places are all marked and the transition time
vanishes. An enabled transition is immediately fired. The new control action is
formed by combining the control codes of the new marked places. The controller
application is run for seven light sequences cycles (42 different outputs).

 Failure Boundedness in Discrete Applications 165

For each injected fault the system behavior is classified based on value and time
dimensions of controller outputs. Each control action, CAi, is compared with its
reference value, CAi

ref, and the time it stays active, CAi
t, must be within CAi

Tref ±
 CAi

T, the reference time (CAi
Tref) and the design time tolerance (CAi

T) for this
control action.

Each control action is allowed to stay in a 'out-of-control state' for up to 80
milliseconds, CAi

slack .Therefore the system behavior can be classified as:

1. Correct – if every control action is correct in value and time:
(CAi=CAi

ref) |CAi
t CAi

Tref | < CAT
i
 , 1 i 42 .

2. Failure-lazy – if the control actions are correct in value but at least one control
action remains active too long, greater than its reference time plus design time
tolerance: (Cai=CAi

ref) CAi
t CAi

Tref CAT
i
) for some i.

3. Failure-premature – If a correct control action has a time length too short we

have an untimely transition: (CAi=CAi
ref) CAi

t CAi
Tref CAT

i
) for some i.

The system behavior is thus further classified based on the next control action(s)
as:
a) Then-lazy – if the next control action is wrong and stays active for too long,

i.e. greater than the allowed grace-time (CAi+1≠ CAi
ref (CAi+1 CAi

Tslack).

b) Transient error (but failure avoided) – if the wrong control action is a
transient; it stays active with the wrong value during only a short time
tolerated by the application.
(CAt

i+1
 CA

i
Tslack) (CA

i+2
= CA

i
ref) (|CA

i
t +CAt

i+1
 + CAt

i+2
 CA

i
Tref | < CAT

i
)

4. Failure-raw – wrong control action active for too long:

 (CA
i
≠ Ca

i
ref) ((CAt

i+1 CAi
Tslack)

Whenever a wrong control action is active only during a short time interval (CAi≠
CA

i
ref CA

i+1= CAi
ref) we need to look ahead to see what happens because we may

have a failure or just a transient error such as in case 3.

3.3 The Experimental Testbed

The experiments are controlled by a host computer running the RT-Xception EME
(Experiment Management Environment) software for fault-injection experiment
management and control. The EME is responsible for fault definition, experiment
execution and control, outcome collection, and statistical analysis.

The controller computer is a standard 90MHz Intel Pentium based PC-board with
8M of RAM. The control application is running on top of SMX© (Simple
Multitasking Executive) [16], a COTS real-time kernel from Micro Digital, Inc. If any
error is detected by the intrinsic error detection mechanisms of the system, such as
processor exceptions or operating system checks, the normal procedure is to flag an
error and reset the system. A COTS watchdog timer card is used to support the Reset
Driven Fault Tolerance (RDFT) technique. The controller computer sends its output
using a serial connection, to a third computer that emulates the application. This

166 J. Muranho et al.

computer collects the output produced by the controller for later analysis by the EME.
This was the same platform used in our previous research on continuous feedback
systems [5].

4 Experimental Observations and Discussion

We have injected four series of 2611 faults in four different versions of the target
system. These faults were injected in the most sensitive parts of the traffic light
controller application: the system constants, the control algorithm and the application
code that outputs the control action (initial experiments with faults randomly
generated led to so few effective errors that we decided to focus the injection target).
Therefore the figures presented below should not be considered as a basis to extract
more general dependability metrics, but rather as indicative of the effectiveness of
applying these techniques to discrete control applications.
The four fault-injection campaigns envisaged the following four scenarios:

• A baseline system with the control software, without any explicit error
detection capability.

• The same system with assertions based on the state-transition model of the
application.

• Since we observed a large number of system crashes —thus constraining the
effectiveness of software assertions— reset-driven fault-tolerance was added
(assertions + RDFT)

• To evaluate the effective contribution of the reset-driven approach, the
baseline system without assertions, with RDFT only was also evaluated.

The global figures for the different experiments are presented in Table 2. The
columns represent the different outcomes observed: a correct behavior (i.e. outputs
followed the reference execution), the occurrence of fail-silent violations (erroneous
output without ever being detected as such); this column represents the erroneous
behavior presented in section 3.2. Finally, the occurrence of a system failure either
with internal detection (triggering a reset) and without (system crash). In the case of
unexpected system crash the table also includes the number of erroneous output
before crashing (fsv). Each field shows the number of faults and the corresponding
percent figure. Each series involved the injection of 2611 effective faults (the
situation where there was a confirmed change in the internal system state, e.g. a
register modified). The last column presents the total number of fail-silent violations
(FSV) including those followed by a system crash.

The first relevant observation is that the addition of assertions to the baseline
system degraded rather than increased the correct behavior of the system (45,2%
instead of 59,9%): the additional complexity increased the probability of failure.
Thus, since we are injecting faults focused in the most sensitive parts of the
application, the overall dependability decreased. However, the number of erroneous
output generated (regardless of a later crash), is significantly reduced from 4% to a
marginal 0,7%. This means that, as an error detection technique, the software
assertions based on checking the correctness of the state transition were really

 Failure Boundedness in Discrete Applications 167

Table 2. Global experimental observations

effective. However, this effectiveness comes at a high price: the total number of
system failures (crashes and forced reset) has grown from 40% to 54.7%. These
preliminary observations indicate that an error detection increase may have to be
traded by reduced availability (which is, nevertheless, a common trade-off). However,
the fail-bounded model for discrete systems mandates that the correct state must be
restored as soon as possible, which is prevented by this large number of total system
failures.

The following scenario adds reset-driven fault tolerance (RDFT) to the assertion
checks, i.e. the controller is continuously performing a hot restart whenever a control
action is output and the assertion checks are executed afterwards, when the system
state has been flushed from latent transient errors. The observations show a dramatic
decrease on the total number of system failures (from 54,7% to 4,4%. This is a direct
consequence of using the reset-driven approach since it is based on resetting
systematically the system between two consecutive outputs, thus any latent error that
would force a system reset or eventually lead to crash is flushed by the programmed
reset. In a previous paper we have already demonstrated the impressive effectiveness
of this technique [13] and it shows again its potential in this system. The most
remarkable effect is the increase in the correct behavior (from 45,2% in the assertion-
only system to 95,4%). Interestingly enough, the number of pure fail-silent violations
grows slightly (from 0,1% to 0,2%). However, we are now dealing with a very
reduced number of faults, thus these figures are not statistically meaningful, only
indicative (the 0,1% figure represents 3 out of 2611 faults injected). It must be
stressed that these are not median figures, but results derived from a subset of faults
injected in the most sensible parts of the system, thus where the presence of the
techniques is most visible.

Since the RDFT approach seems so effective, it remains to be understood its raw
contribution to the final figures, i.e. whether the dependability increase is due mostly

168 J. Muranho et al.

to the RDFT or to the use of assertions. This was the motivation behind the fault-
injection campaign experiments involving the baseline case without assertions, using
RDFT only. In this scenario we observed a slight decrease on the number of correct
outputs generated (from 95,4% to 94,4%) and a similar increase on the system failures
(from 4,4% to 5,4%). This indicates that the small variation in the correct outcomes is
directly related to the number of failures prevented. Anyway these variations are not
conclusive since they fall into the statistical error margin. This result indicates clearly
that the RDFT technique is the major responsible for the stability of the system in
what concerns correct output generation versus number of failures: the RDFT sets a
baseline of around 95% of correct behavior and a remaining 4% to 5% situations
where the assertions can show its effectiveness.

Thus, the remaining point is to evaluate the error detection effectiveness of
assertions, i.e. whether the controller has output erroneous values before failure
whenever it crashed. This is the rationale behind the final column of Table 2. In this
column we highlight the total number of FSV observed, including both the 'pure' fail-
silent violations (erroneous output without ever being detected) and those followed by
crash. As can be seen, the fail-silent violations are lower whenever assertions are
used: this is its main contribution to the dependability of the system.

We can now conclude that the global figures indicate clearly that RDFT assures the
maximum system stability (preventing crashes) and assertions minimizes the
generation of erroneous output (FSV). This combined effect guarantees time-bounded
errors thus allowing the extension of the fail-bounded model into the broader field of
discrete control applications.

5 Conclusion

In this paper we presented an experimental evaluation showing that the failure
bounded model can be extended from continuous feedback applications to discrete
systems whenever in the control loop there is a physical system possessing grace
time. In such systems the failure boundedness can be applied in the time domain, i.e.
by constraining the duration of an erroneous state-transition. To support this
approach we adopted the reset-driven fault tolerance technique to guarantee that the
occurrence of crashes is dramatically reduced, associated to assertions based on the
state transitions to prevent the occurrence of erroneous outputs. The experiments
presented show a tenfold decrease of controller crashes from 40% to 4,4% and a
reduction of erroneous undetected transitions from 4,0% to 0,7% of the 2611 faults
injected in the most critical parts of a traffic light control software. These figures
support the extension of the fail-bounded model into the broader field of discrete
control applications.

Acknowledgments

This work was partially supported by the Group of Networks and Multimedia of the
Institute of Telecommunications (IT) Covilhã Lab, Portugal; and by Portuguese
Ministry of Education through program Prodep III-Action 5.3-project 185.009.

 Failure Boundedness in Discrete Applications 169

References

1. Zuberek, W.M.: Timed Petri nets and preliminary performance evaluation. In: 7th Annual
Symposium on Computer Architecture, pp. 88–96. ACM Press, New York (1980)

2. Powell, D., Verísimo, P., Bonn, G., Waeselynck, F., Seaton, D.: The Delta-4 Approach to
Dependability in Open Distributed Computing Systems. In: 18th Fault-Tolerant Computer
Symposium, pp. 246–251. IEEE Press, New York (1988)

3. Avizienis, A.: Building Dependable Systems: How to Keep Up with Complexity. In: 25th
Fault-Tolerant Computer Symposium, pp. 4–14. IEEE Press, New York (1995)

4. Somani, A.K., Vaidya, N.H.: Understanding Fault Tolerance and Reliability. IEEE
Computer 30(4), 45–50 (1997)

5. Cunha, J.C., Maia, R., Rela, M.Z., Silva, J.G.: A Study on Failure Models in Feedback
Control Systems. In: International Conference on Dependable Systems and Networks, pp.
314–323. IEEE Press, New York (2001)

6. Vinter, J., Aidemark, J., Folkesson, P., Karlsson, J.: Reducing Critical Failures for Control
Algorithms Using Executable Assertions and Best Effort Recovery. In: International
Conference on Dependable Systems and Networks, pp. 347–356. IEEE Press, New York
(2001)

7. Kirrman, H.D.: Fault Tolerance in Process Control: An overview and examples of
European Products. IEEE Micro 7(5), 27–50 (1987)

8. Silva, J.G., Prata, P., Rela, M.Z., Madeira, H.: Practical Issues in the Use of ABFT and a
New Failure Model. In: 28th Fault-Tolerant Computer Symposium, pp. 26–35. IEEE
Press, New York (1998)

9. Prata, P., Rela, M.Z., Madeira, H., Silva, J.G: Robust Assertions and Fail-Bounded
Behavior. Journal of the Brazilian Computer Society 3(10), 20–32 (2005)

10. Cunha, J.C., Rela, M.Z., Silva, J.G.: Can Software-Implemented Fault-Injection be used
on Real-Time Systems? In: Hlavicka, J., Maehle, E., Pataricza, A. (eds.) EDCC 1999.
LNCS, vol. 1667, pp. 209–221. Springer, Heidelberg (1999)

11. Carreira, J., Madeira, H., Silva, J.G.: Xception: A Technique for the Experimental
Evaluation of Dependability in Modern Computers. IEEE Trans. on Software
Engineering 24(2), 125–135 (1998)

12. Madeira, H., Silva, J.G.: Experimental evaluation of the fail-silent behavior in computers
without error masking. In: 24th Fault-Tolerant Computer Symposium, pp. 350–359. IEEE
Press, New York (1994)

13. Cunha, J.C., Correia, A., Henriques, J., Rela, M.Z.: Reset-Driven Fault Tolerance. In:
Bondavalli, A., Thévenod-Fosse, P. (eds.) EDCC 2002. LNCS, vol. 2485, pp. 102–120.
Springer, Heidelberg (2002)

14. Libet, B.: Unconscious cerebral initiative and the role of conscious will in voluntary
action. Behavioral and brain sciences 8(4), 529–566 (1985)

15. ITS National Architecture, Federal Highway Administration, Technical report, US
Department of Transportation (1998)

16. SMX® Simple Multitasking Executive. http://www.smxinfo.com

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 170–178, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Designing Fault Injection Experiments Using
State-Based Model to Test a Space Software

Ana Maria Ambrosio1, Fátima Mattiello-Francisco1,
Valdivino A. Santiago Jr.1, Wendell P. Silva1, and Eliane Martins2

1 National Institute for Space Research (INPE)
Av. Dos Astronautas, 1758 - São Jose Campos -12227-010 - Brazil

Phone: +55-12-3945-6586,
{ana,fatima}@dss.inpe.br, {valdivino,wendell}@das.inpe.br

2 Institute of Computing (IC)
State University of Campinas (UNICAMP)

P.O. Box 6176 - Campinas, 13083-970, SP, Brazil
eliane@ic.unicamp.br

Abstract. Software for space applications requires significant testing. This
paper presents an evaluation of the CoFI testing methodology as applied to
actual space software, where deterministic fault cases derived from state-based
models were executed using the software-implemented fault injection
technique. Different models were used to represent the behavior of embedded
software in a real satellite computer under the presence of both normal inputs
and external faults in communication, processor, and memory. CoFI
methodology was used for model construction, the Condado tool for test
derivation, and the QSEE-TAS tool for test execution. In total, 8,620% of 471
fault cases detected errors in the software; this is a very large number, and more
so considering that the software had already been tested by the company which
developed it before being subject the CoFI methodology.

Keywords: deterministic fault injection, software testing method, state-based
models.

1 Introduction

The testing phase in software development lifecycle has attracted software engineer
attention to answer the question, “how can one test a complex embedded software in a
short time without losing testing accuracy?”

Model-based test techniques have been used for protocol conformance testing to
complement the ISO practical testing guides, checking the implementation with
respect to a specification written in a formal notation [12], from which tests are
automatically generated [5], [8], [18].

A set of conformance test cases aims to establish that a given Implementation
Under Test (IUT): (i) performs all functions of the original specification over the full
range of parameter values and (ii) can properly reject erroneous inputs in such a way
that it is consistent with the original specification [11]. These test cases generate a
certain number of detected errors, but for dependability assessment, fault injection

 Designing Fault Injection Experiments Using State-Based Model 171

methods are recommended. Fault injection execution is an activity highly dependent
on the facilities provided by the test environment [3], [6] and constraints in test
execution impose constraints in test generation. The CoFI (Conformance and Fault
Injection) testing methodology [1] was designed to help determine which faults to
inject using the same principles as model-based techniques “starting from a textual
specification towards formal models” [13]. Thus, CoFI reinforces the systematic
derivation of test cases that may be executed with software-implemented fault
injection (SWIFI).

This article presents the results of the use of CoFI to define which tests should be
generated to validate the SWPDC (SoftWare embedded into the Payload Data
Handling Computer (PDC)) that is intended to be part of a scientific X-ray instrument
onboard of the MIRAX satellite under development at the National Institute for Space
Research (INPE), Brazil. This software was developed by a private company and
delivered to INPE as part of INPE’s Quality of Space Application Embedded
Software (QSEE) research project of the [15], [16].

The paper is organized as follows. Section 2 presents an overview of the SWPDC.
Section 3 shows the testing tools that were used. Section 4 explains the CoFI
methodology applied to the SWPDC. Section 5 discusses the test results. Finally,
Section 6 presents pertinent conclusions.

2 Overview of the SWPDC

Figure 1 illustrates the SWPDC software in charge of collecting scientific data from
the Event Pre-Processors (EPPs); executing commands from the main on-board
computer (OBDH); generating housekeeping data; performing data memory
management, loading programs, and detecting external faults that can occur at
anytime, as is typical in computer space systems.

Fig. 1. Context of the SWPDC

Given that the SWPDC is a software embedded in a satellite computer, it is
exposed to space radiation, which may cause Single-Event Effects (SEEs) like the
Single Event Upset (SEU) and Multiple Bit Upset (MBU). A single bit flip in a digital
device is an example of SEU. When several memory bits are upset during the passage
of the same particle it is a MBU [10].

The SWPDC also implements error detection mechanisms for Single and Double
memory errors, which are "soft" bit errors, in that a reset or rewriting of the device
causes normal behavior thereafter.

To detect processor errors the SWPDC is linked to a Watchdog circuit. A
watchdog circuit is a computer hardware-timing device that indicates a problem if the
software neglects to regularly reset the circuit. Exception handling mechanisms exist

172 A.M. Ambrosio et al.

to treat communication faults. No complex action to treat such errors is required;
however, all errors that occur are reported via housekeeping data transmitted to the
Ground System.

3 Test Environment

For the sake of validation, the SWPDC was treated as a black-box whose interactions
with the test environment are only through Points of Control and Observation (PCOs).
Figure 2 illustrates the test environment where the circles around the SWPDC box
indicate the PCO’s. The external inputs were all simulated. The dashed arrow from
the Watchdog Circuit Simulation and to the Watchdog Error Simulation denotes the
SWPDC did not send the watchdog timer signal within the expected period of time. A
special circuit triggers Simple and Double memory errors, while another circuit
controls the temperature. The EEP Simulator generates the scientific data and the
QSEE-TAS (Automatic Software Testing) tool [17] simulates the OBDH.

Tester
Test Cases

Test
Data base

Software Test
Reports

RS-232

USB SWPDC RS-232

Temperature
Simulation

Clock Generator

Simple Error,
Double Error
Simulation

Watchdog
Circuit

Simulation

Watchdog
Error

Simulation

Power Supply

Digital Digital Digital

ADC Digital Ext Int

QSEE-TAS tool
 /OBDH simulator EPP Simulator

Condado

Models

Fig. 2. The Test Environment. Legend: Ext Int = External Interruption; USB = Universal Serial
Bus; ADC = Analog-to-Digital Converter.

The QSEE-TAS tool also includes facilities for test configuration, execution,
reports, management of the test cases produced by Condado or produced manually,
and SWIFI mechanisms that accelerate the occurrence of communication faults in
commands produced by the OBDH. This mechanism assigns unspecified and/or
incorrect values to fields of the commands to corrupt messages, repeat or delay
commands. So far, injection of memory and processor faults has not been automated,
so the tester manually interfered in the respective PCO to trigger these types of faults.

The Condado tool [14] automatically derives test cases from state-based models.
This tool is based on a theoretical approach of graphs and implements the switch-
cover algorithm [7]. Since Condado generates all test cases in the same format:
“senddata (pco,input1) recdata(pco,output1) senddata

 Designing Fault Injection Experiments Using State-Based Model 173

(pco,input2) recdata()…”, a converter that takes specific inputs (indicating
faults to be injected) of the fault cases and produces pre-defined faults was built,
thereby permitting QSEE-TAS to execute the test cases produced by Condado
directly.

4 CoFI Testing Methodology Applied to the SWPDC Software

CoFI systematizes the creation of partial models of IUT behavior that are employed
in automated test methods to generate test cases. In other words, instead of designing
a very complex model of software behavior under normal and faulty inputs, which
could lead to an explosion of the number of test cases produced from this model,
several simpler models are built. The behavior of an IUT is modeled for each service
the IUT provides. Scenarios for normal and exceptional behavior are mapped into
several state-based models [2], taking into account the fault types (or the fault model,
the term used by the Fault Tolerance community), which describe the way the
hardware or software component can fail, an important step for fault injection
purposes.

4.1 Creating the SWPDC Models

In this study, we identified the SWPDC inputs that could be executed in the test
environment as the commands that characterize the IUT’s services. Inputs that could
not be executed were not considered, such as duplication and delay in commands
coming from an EPP. Next, we defined a syntax for the inputs and outputs used in the
models. An input carries information on command, channel (the physical
representation of the PCO), and faults. Inputs preceded by Cmd indicate commands
arriving from the OBDH, so the PCO was defined implicitly. The symbol {badcks}
indicates the injection of a checksum error, while {sup} indicates the suppression of a
field from the command. Inputs with no faults are all the commands of the PDC-
OBDH and PDC-EPP communication protocols (see Figure 1).

Specific inputs indicate the faults to be triggered by the QSEE-TAS tool. The
following information may be obtained from such inputs: a) channel-identification; b)
number of times the command is repeated; c) delay time (in milliseconds) to wait
before sending the command; d) special processing (to calculate checksum or to
suppress command fields). Table 1 presents all the fault types accounted for in
SWPDC; and sample inputs are also described for each fault type.

Eleven services were identified for the construction of the state-based models. The
SWPDC service behavior was represented in scenarios for normal situations (Norm);
specified-exceptional situations (SExc); sneak paths (SPat)1; the presence of the
communication faults such as command corruption, truncated and delay/early
commands (Com); and the presence of memory and processor faults (M&Pr).

1 A sneak path [4] is a path in the model that contains unlikely inputs for a given state. To help

identify sneak path scenarios the tester creates a state table and completes it with the valid
inputs against all states, then, create models that represent out-of-order and duplicated
commands, which are two common types of communication faults.

174 A.M. Ambrosio et al.

Table 1. Fault types covered by the SWPDC and sample of specific inputs

Fault Type Examples of specific inputs Input description
CmdTurnOnEPP2,CKS{badcks} The Turn On EPP2

command will have an
error in checksum field.

Corrupted data
 field values

CmdPrepMemoryDumpData,Me
m,18,EndI,8000,EndF,FFFF

The Prepare Memory
Dump command will
have an error in the
address field.

Repeated
command

CmdTransTestData_2X The Transmit Test Data
command will be
received twice.Indicates
a duplication error.

Out-of-order
commands

- Commands are sent in
an unexpected sequence.

Truncated –
command fields
 are missing

CmdTurnOffEPP1,NU,{sup} The third field in Turn
Off EPP1 command will
be suppressed.

C
om

m
un

ic
at

io
n

Delay/Early –
 command
arriving
after/before the
specified time

ObsEndT T time-units will expire.
This input is preceded
by an action to start a
timer in T time-units.

Simple error ObsSingleError A Single Event Upset
will occur

M
em

or
y

Double error ObsDoubleError A Multiple (double)
Event Upset will occur

First occurrence
of Process-fault

ObsErrorProc1 First indication of the
watchdog

P
ro

ce
ss

Second
occurrence of
Process-fault

ObsErrorProc2 Second consecutive
indication of the
watchdog

Table 2 lists the services and the distribution of the 97 models by services and by

scenario type. In general, each set of faults of the same type was mapped in a distinct
model, except for memory and processor faults. The grey columns indicate the
models that produced fault cases.

The model of the single scenario for M&Pro of the S4-Test Data service is
illustrated in Figure 3. This model shows that under the presence of one memory error
(represented by the specific input ObsSingleError) the SWPDC reacts by correcting

 Designing Fault Injection Experiments Using State-Based Model 175

Table 2. Services x models

Services Models Total
 Norm SExc SPat Com M&Pr

S1 Initialization 2 1 1 1 1 6
S2 Scientific data 2 2 1 1 1 7
S3 Housekeeping 3 3 3 1 1 11
S4 Test data 2 4 4 1 1 12
S5 Diagnostics 2 4 4 2 2 14
S6 Memory dump 5 3 5 2 1 16
S7 Change operat mode 1 0 0 0 1 2
S8 Load&execute program 1 5 4 3 2 15
S9 OBDH msg syntax 1 0 0 1 0 2
S10 EPP msg syntax 1 0 0 1 0 2
S11 Special commands 4 0 0 2 4 10

Total 24 24 22 13 14 97

the error (represented by the ObsCorrectError output), reporting the event in
housekeeping reports (ObsWriteHkReport) and remaining in the same state. But,
under a double memory error (ObsDoubleError), where SWPDC is not required to
correct the error, only a report is produced. In the presence of the first occurrence of a
processor error (ObsErroProc1), it reports the failure, but in the second occurrence
(ObsErroProc2), a reset makes the SWPDC return to its initial state (Standby).

5 The Fault Injection Experiments

Each model was submitted to the Condado tool. In the IUT models a transition
represented an input and the expected corresponding output produced in reaction to
that input [11]. This means that the test cases generated by Condado are ordered sets
of inputs and outputs, comprising a path from the initial state to a final state. The set
of test cases, therefore, covered all branches of each model at least once.

External faults added to the set of inputs normally accepted by the SWPDC define
the generation of fault cases, which have specific inputs and input data that characterize
the fault to be injected, so each fault case is considered a fault injection experiment.

Table 3 shows the distribution of the errors detected by the fault cases in one
campaign. In total, 451 fault cases were generated in 770 test cases produced from the
models, resulting in 39 detected errors. Processor and memory faults were modeled in
a single model (M&Pr), but fault cases and the errors detected were computed
separately. There were 2 more processor errors than memory errors detected. The
fault cases of communication were derived from the SPat and the Com models. The
disproportionate number of communication fault cases reflects the research priority
for identifying communication errors.

176 A.M. Ambrosio et al.

Fig. 3. State-based model representing processor and memory faults

Table 3. Fault type x detected errors

Fault Type Fault injection experiments Detected Errors
Communication 283 31
Processor 80 5
Memory 88 3

Total 451 39

The other 319 test cases generated from Norm and SExc models resulted in only 12

errors. Thus, CoFI was able to identify a significant number of errors in a relatively
small number of fault cases. This suggests the CoFI methodology identified likely
errors successfully when pre-defining which faults to inject, confirming the
advantages of deterministic fault injection methods [9].

6 Conclusions

Considering that we were going to validate software supplied by a competent team
from a prominent Brazilian Software industry to INPE, which was developed under
rigorous quality assurance rules, we expected to find very few errors. The results
surprised us as 51 errors were yet found.

Since the models reflected the software behavior based on information obtained
from the textual documents such as protocol specification, technical specification,
software design, and manual, all non-conformances between code and document were

 Designing Fault Injection Experiments Using State-Based Model 177

computed as a detected error. These errors were classified as 45% only code errors
33% only document non-conformance errors and 22% code and document non-
conformance errors.

The results pointed out that focusing on the faults is more effective than on the
normal behavior for validation purposes. Since models were grouped by fault types,
the set of automatically generated fault cases were distinguishable by their fault types
and statistical calculations on the tests were facilitated.

The INPE test team worked independently of the industrial development team to
create the models. Obviously, the greater effort to create the models was compensated
by the superior test organization CoFI achieved in comparison with previous ad hoc
test designs. The models served as guides to focus the tester’s attention to the faults
and exceptions that could occur during the software’s operation, leading to the design
of situations the developers had not thought of. One example is for OBDH to require
data during SWPDC initialization service.

Future work is required to verify whether other types of errors are identified when
test models are combined. In order to make the CoFI testing methodology applicable
to any space application, the adoption of a standardized test language to represent the
inputs and outputs seems to be important as well.

Acknowledgments

The authors acknowledge the financial support from Financiadora de Estudos e
Projetos (FINEP) to the QSEE research project and all those involved. The authors
also thank the reviewers for their insightful comments and constructive suggestions.

References

1. Ambrosio, A.M.: CoFI: uma abordagem combinando teste de conformidade e injeção de
falhas para validação de software em aplicações espaciais. INPE-13264-TDI/1031.
Instituto Nacional de Pesquisas Espaciais - INPE (2005)

2. Ambrosio, A.M., Martins, E., Vijaykumar, N.L., Carvalho, S.V.: A Methodology for
Designing Fault Injection Experiments as an Addition to Communication Systems
Conformance Testing. In: Proceedings of the 1st Workshop on Dependable Software -
Tools and Methods in the IEEE Conference on Dependable System and Network,
Yokohama, Japan, 28 June - 1 July 2005 (2005)

3. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., Martins, E.,
Powell, D.: Fault Injection for Dependability Validation: A Methodology and Some
Applications. IEEE Tr on SE 16(2), 166–182 (1990)

4. Binder, R.: Testing Object-Oriented Systems-Models, Patterns and Tools. Addison-
Wesley, Reading (2000)

5. Cavalli, A., Gervy, C., Prokopenko, S.: New Approaches for Passive Testing using
Extended Finite State Machine Specification. In: WTCS, Canada (2001)

6. Chandra, R., Lefever, R.M., Cukier, M., Sanders, W.H.A: global-state triggered fault
injector for distributed system evaluation. IEEE Transaction on Parallel and Distributed
Systems 15(7), 593–605 (2004)

178 A.M. Ambrosio et al.

7. Chow, T.S.: Testing software design modeled by finite state machines. IEEE Trans on Sw
Engineering (TSE) 3, 178–187 (1978)

8. Dssouli, H., Salek, K., Aboulhamid, E., En-Nouaary, A., Bourhfir, C.: Test Development
for Comm. Protocols: Towards Automation. Computer Networks 31, 1835–1872 (1999)

9. Echtle, K., Chen, Y.: Evaluation of Deterministic Fault Injection for Fault-Tolerant
Protocol Testing. In: IEEE 21th Annual International Symposium on Fault-Tolerant
Computing, Montreal, pp. 418–425. IEEE Computer Society Press, Los Alamitos (1991)

10. Goddard Space Flight Center (GSFC) (accessed March 2007), available at:
 http://radhome.gsfc.nasa.gov/radhome/papers/seeca1.htm

11. Holzmann, G.J.: Design and validation of computer protocols. Prentice-Hall, Englewood
Cliffs (1990)

12. International Organization for Standardization ISO/IEC- IS9646 International standard
conformance testing methodology and framework. Geneve (1991)

13. Martins, E., Mattiello-Francisco, F.A: Tool for Fault Injection and Conformance Testing
of Distributed Systems. LNCS, vol. 2847/2003, pp. 282–302 (2003)

14. Martins, E., Sabião, S.B., Ambrosio, A.M.: ConData: a Tool for Automating
Specification-based Test Case Generation for Communication Systems. Software Quality
Journal 8(4), 303–319 (1999)

15. Mattiello-Francisco, M.F., Santiago, V.A., Costa, R., Jogaib, L.: Verificação e Validação
na terceirização de software embarcado em aplicaçães espaciais. In: Simpósio Brasiliero
de Qualidade de Software - SBQS2006, Villa Velha, ES, Brazil, pp. 368–375 (2006)

16. Santiago, V., Mattiello-Francisco, F., Costa, R., Silva, W.P., Ambrosio, A.M.: QSEE
Project: An Experience in Outsourcing Software Development for Space Applications. In:
The Nineteenth International Conference on Software Engineering and Knowledge
Engineering (SEKE’07), Boston, EUA (2007)

17. Silva, W.P., et al.: QSEE-TAS: Uma Ferramenta para Execução e Relato Automatizados
de Testes de Software para Aplicaçães Espaciais. In: XX Brazilian Symposium on
Software Engineering-SBES (2006)

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 179–197, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Component-Based Software Certification Based on
Experimental Risk Assessment

Regina Moraes1, João Durães3, Eliane Martins1, and Henrique Madeira2

1 State University of Campinas, UNICAMP
São Paulo, Brazil 13.084-971 – Campinas – SP – Brasil

regina@ceset.unicamp.br, eliane@ic.unicamp.br
2 CISUC, University of Coimbra, Portugal 3030-290 – Coimbra – Portugal

3 CISUC, ISEC, 3030-290 – Coimbra – Portugal
{jduraes,henrique}@dei.uc.pt

Abstract. Third-party software certification should attest that the software
product satisfies the required confidence level according to certification
standards such as ISO/IEC 9126, ISO/IEC 14598 or ISO/IEC 25051. In many
application areas, especially in mission-critical applications, certification is
essential or even mandatory. However, the certification of software products
using common off-the-shelf (COTS) components is difficult to attain, as
detailed information about COTS is seldom available. Nevertheless, software
products are increasingly being based on COTS components, which mean
that traditional certification processes should be enhanced to take COTS into
account in an effective way. This paper proposes a mean to help in the
certification of component-based systems through an experimental risk
assessment methodology based on fault injection and statistical analysis. Using
the proposed methodology the certification authority or the system integrator
can compare among components available the one that best fit for the system
that is assembling a component that provides a specific functionality. Based on
the results it is also possible to decide whether a software product may be
considered certified or not in what concerns the risk of using a COTS into the
system. The proposed approach is demonstrated and evaluated using a space
application running on top of two alternative COTS real-time operating
systems: RTEMS and RTLinux.

Keywords: Component-based system certification, Experimental Risk
Assessment, Fault Injection.

1 Introduction

Modern society is highly dependent on computers and software. Currently, software is
recognized as the most complex and error-prone part of computer based systems.
Thus, software reliability is increasingly important and software products certification
is more crucial than ever.

In many cases, software certification is mandatory by law (e.g., software for
medical equipment, avionics, telecommunications, etc), and even when certification is

180 R. Moraes et al.

merely recommended it still constitutes an important product marketing argument.
Traditional quality certification standards are focused on the software development
process (e.g., ISO/IEC 12207, Capability Maturity Model - CMM, Capability
Maturity Model Integrated - CMMI). However, the certification of software products
for safety and business critical application must consider both the development
process and the product intrinsic quality. Several certification standards targeting
software products have been proposed (e.g., ISO/IEC 12119, ISO/IEC 9126). This
trend for software product certification (in addition to software development process
certification) is gaining ground. Recent ISO standards are now focusing on
component certification, such as the recent draft for software component quality
certification ISO/IEC 25051 [21].

Due to the pressure on time and cost, the integration of components that already
have been used and tested in other systems (very often, common-off-the-shelf –
COTS – components) has become particularly attractive. The objective is to build
new software products capitalizing on previously work that can be immediately
deployed in new contexts. This software development practice introduces a false
sense of safety, as the components have already been used, and constitutes a
pragmatic way of coping with the very high complexity of most software products,
while it also reduces time to market, cuts development costs, reduces maintenance
costs, and potentially improves quality. All these beliefs are based on the assumption
that the components have been well tested previously [23]. However, the reuse of
COTS in new systems introduces new problems, as software developers (who also
assume the role of software integrators) often do not have access to detailed
information on the COTS components they use (development and testing
methodologies, component architecture and source code). Also, the new operational
conditions may differ substantially from those the components were initially designed
for, which may expose hidden software faults in the components or originate
interoperability problems between components [52]. In short, the use of COTS in new
software products represents a risk for the system in which these COTS are integrated
and must be specifically addressed in software product certification.

In spite of introducing new risks of failure, component-based software
development with intensive reuse of components is a solid trend in the industry and is
not likely to disappear, as the alternative would be the much more expensive write-
from-scratch approach. Therefore, the choice of the right (i.e., less risky, reliable and
robust) COTS components is an essential task and software product certification may
be required by acquirers in order to accept software components. Despite the
consciousness about its importance, software component certification it is still
immature and much research is needed [33].

This paper proposes a methodology to certify software components within a given
system and environment. The approach uses software fault injection [10] to measure
experimentally the impact of the activation of realistic residual faults in the COTS
component on the enclosing system. The proposed methodology combine the use of
well established software complexity metrics [28, 47] with statistical analysis to
estimate component fault proneness. Combining all measurements, an experimental
risk assessment technique is proposed to evaluate the risk represented by the use of a
given COTS in the product under certification. The risk is estimated using the
classical risk equation that estimates risk as the probability of occurrence of an

 Component-Based Software Certification Based on Experimental Risk Assessment 181

undesired event and the impact (cost) of the resulting consequences. The proposed
risk assessment methodology can help the software evaluation team to reach software
system certification. Our proposal integrates the experimental risk assessment
methodology in the evaluation process following ISO1/IEC2 14598 standards
considering the quality in use metrics as proposed by ISO/IEC 9126 software product
standard. The selection of both standards is justified by the complementary
characteristics presented by ISO/IEC 9126 and ISO/IEC 14598, which together
consider software product and process.

Our goal with this work is the certification of software products that integrate
COTS and to enable the comparison of different versions of the software product
when competitive COTS that provide the same functionality are integrated in each
version allowing the certification of the best version presented.

The proposed approach is demonstrated and evaluated using a satellite data
handling application used by the European Space Agency running on top of two
alternative COTS real-time operating systems: RTEMS and RTLinux.

The remainder of this paper is organized as follows: the next section presents a
survey of software certification, software risk assessment and the related works more
relevant to our own. Software certification using experimental risk assessment is
presented in Section 3. The case study results are discussed in Section 4. Section 5
concludes this work summing up the main contributions.

2 Software Certification and Risk Assessment: Survey and
Related Work

The methodology proposed in this paper is aimed at the certification of a component-
based system that has a COTS software product among its components. The proposed
certification is based on risk evaluation, which in turn is supported by two research
lines: the use of software metrics to estimate component fault density and the
injection of software faults to evaluate the cost of component failures.

2.1 Software Certification

Certification is defined as “procedure by which a third-party gives written assurance
that a product, process or service conforms to specified requirements” [12].
Certification is the process in which a certification authority issues a certificate
document to show that the solicitant abides the principles set out in a specific
standard, i.e., certifies that a given entity fulfills a set of quality properties previously
established in a given standard. Different standards focus on different sets of
properties.

Certification in the software domain can be applied to the software development
process (e.g., ISO/IEC 12207, Capability Maturity Model - CMM, Capability
Maturity Model Integrated - CMMI) or to the software product (e.g., ISO/IEC 12119,
ISO/IEC 9126, ISO/IEC 25051). Our work is focused on the certification of software

1 International Organization for Standardization.
2 International Electrotechnical Commission.

182 R. Moraes et al.

product and not on the certification of the software development process. Reliability
and safety are typical examples of characteristics required in software products
certification.

Concerning software component certification, Councill [8] presents set of
requirements to guarantee software component quality. That work emphasizes the
importance of the estimated risk and the identification, in early software life cycle, the
correct implementation of specified requirements among others suggestions to
improve software quality. Our work can help in the risk estimation based on early
prototype.

The work presented by Stafford and Wallnau [45] proposes a model in which
several actors participate in the software component development and receive the
responsibilities on the software component quality rather than vesting trust in third-
party certification authority. Different actors with distinct roles to play in a
component-based development paradigm may interact in a variety of ways to achieve
trust. Morris [33] also views the developers' self-certification as a viable alternative to
independent certification and proposes a software component certification that
developers supply, in a standard portable form with the software package, a way so
that the customers are able to manage the certification process they need. Using this
standard, the costumers can determine the quality and suitability of the purchased
software in their application context. This approach has the disadvantage of requiring
the users to build the tests incurring in costs of resources and time.

Following a different approach, Voas [50] suggested that independent agencies
such as software certification laboratories should assume the role of software product
certification and suggests that the only approach that consumers can trust is the
certification provided by agencies that are completely independent from the software
product providers. The methodology proposed in that work uses three quality
assessment techniques: (i) component black-box testing to verify component quality,
(ii) fault injection to determine how well a system tolerates a failing component, and
(iii) operational system testing to determine how well the system will tolerate a
properly functioning component. The methodology can help developers to decide
whether a given component is appropriated for integration in the intended system.
Voas [51] also emphasizes that current certification practices are highly process-
oriented and suggests that mere best practices guidelines for the development process
are not enough to guarantee high-quality software. The work presented by Voas [50]
also proposes a high-assurance certification based on desirable-behavior testing
(addresses the operational input scenario), abnormal testing (addresses abnormal input
scenarios), and fault injection (addresses failures in any subsystem, hardware or
external environment). If the software product passes these tests (e.g. the product
behaves as expected), then it is certified as high-assurance software. Our work also
considers fault injection. However, we use only fault types that are representative of
residual faults, according to previous research [10], and derive the probability of fault
activation. Additionally, we use complexity metrics to estimate the probability of the
component having residual faults [32].

The work presented in [37] focuses on safety certification using the notion of risk
assessment of software systems, including systems that use COTS. The proposal
includes an iterative process for safety certification focusing on the software product
development process. According to that proposal, the safety verifications are done in

 Component-Based Software Certification Based on Experimental Risk Assessment 183

parallel with software development. That work ([37]) emphasizes the relevance of
both static and dynamic characteristics of software evaluation but does not specify
how to deal with them. Our work combines static (software complexity metrics and
statistical analysis to estimate component fault proneness) and dynamic (fault
injection to measure experimentally the impact of fault activation) characteristics of
software to estimate the risk that a COTS component can present to the whole
software product.

The ISO/IEC 9126 standard [20] defines a software quality model which has been
used as a reference for the evaluation of software quality. This standard is composed
by the ISO/IEC 9126-1 quality model, the ISO/IEC 9126-2 external metrics, the
ISO/IEC 9126-3 internal metrics, and the ISO/IEC 9126-4 quality in use metrics. The
main goal of this standard is the identification of the software quality attributes that
can be described by suppliers (internal and external attributes) aimed at
evaluation/selection of COTS. The ISO/IEC 9126 standard does not describe specific
quality requirements for software; instead it defines a quality model that can
be applied to any kind of software product. According to ISO/IEC 9126, the quality
of a software product is defined by three aspects: the internal quality (internal
characteristics such as static models, source code, documen-tation, etc.), the external
quality (external characteristics such as the visible effects in the application
environment), and the quality in use (considers the customer point of view of the
software product and is useful to show the component behavior in different
environments) [7]. The ISO/IEC 9126 standard is a generic software quality model
and it is very difficult to apply to COTS components.

The ISO/IEC 14598 [19] standard is a complement to ISO/IEC 9126 and provides
the guidelines for the evaluation of software products using ISO/IEC 9126. In
practice, both standards are used in conjunction. The process can be used to evaluate
both finished products and products still under development. ISO/IEC 14598 is
composed of six parts: 14598-1 addresses internal metrics, 14598-2 and 14598-6
address support evaluation, 14598-3, 14598-4 and 14598-5 refer to evaluation
process. ISO/IEC 14598 suggests that an evaluation module is defined for each
measure that is required for the software certification. An evaluation module is “a
package of evaluation technology for measuring software quality characteristics, sub-
characteristics or attributes” [19]. A package is a set of evaluation methods and
techniques, inputs to the evaluation, data to be measured and collected, supporting
procedures and tools. The evaluation technology is composed by techniques, tools,
metrics, measures and relevant technical information used for evaluation. Through an
evaluation module, the detailed information to get the measurements is well
documented and represents a mean to obtain a repeatable, reproducible and objective
evaluation.

The ISO/IEC 12119 [18] defines quality requirements for software packages and
provides guidelines to conduct the tests to assert the conformance of the software to
the standard. The ISO/IEC 25051 standard [21] is an improvement of the ISO/IEC
12119. It focuses on COTS software products and specifies quality requirements
which address test documentation, test cases and test reporting. ISO/IEC 25051
provides the instructions to evaluate the conformity to the standard. It also includes
recommendations for safety of business critical COTS software products. The main
goal of this standard is to provide the user with confidence that the COTS software

184 R. Moraes et al.

product performs as offered and delivered. This standard does not address the
development process quality of the COTS software supplier. Our approach differs
from this one as our focus is the COTS software product when it is integrated in the
larger system.

2.2 Software Risk Assessment

Many studies have tried to minimize the problems associated to software faults and
estimate their risk with particular emphasis on studies on software testing, software
reliability modelling and software reliability risk analysis [28, 34, 17, 24].

Risk is often assessed based on heuristics [3] or on rigorous analysis using
statistical models such as software reliability modeling to estimate the compo-
nent failure likelihood [28, 44] and hazard analysis to estimate the consequence of
failures [25].

The software risk assessment equation used in most of the literature is basically the
same and combine the probability of fault in a given software component and faults
impact (or cost). However, the equation is interpreted in different ways, depending on
the approach used for risk assessment. Rosenberg works [39] uses CK metrics and
threshold values to estimate the fault proneness. The failure cost based on field data
and the operational profile is the approach used in [43] and [1] considers the
component exposure in the point of view of the customer and in the point of view of
the vendor to estimate the system risk.

Complexity metrics have been used in many studies that show the relationship
between component complexity and error proneness [36, 24, 11]. The study presented
in [4] experimentally validates object-oriented design metrics as quality indicators to
predict fault-prone classes and concludes that several of these metrics appear to be
useful to predict class fault-proneness. However, the usefulness of complexity metrics
to estimate error proneness is not consensual. Fenton [13] shows that the use of static
metrics to estimate runtime errors does not hold in some cases and Menzies et al. [30]
presents some explanations for this apparent contradiction and reinforces the
usefulness of static code metrics as probabilistic predictors when a large amount of
data is analyzed in order to generalize the results.

The Failure Mode and Effect Analysis (FMEA) technique [25] is widely used to
estimate the impact of component failures (known as severity analysis in the context
of FMEA). This technique is widely used in the development of software for highly
regulated application areas and is suggested as a systematic method that should be
used in nuclear software [48], health software [16], and aircraft systems [46] among
others.

Experimental evaluation of the impact (cost) of failures using fault injection and
robustness tech-niques is widely used approach that allows the observation of the
system behavior in the presence of faults [2, 22, 50] when these faults are artificially
inserted into the system under test. Fault injection allows testers to better understand
how the system under test behaves in the presence of faults, and thus estimate the
consequences of the activation of the unknown residual faults in the system.

Most of the fault injection works actually inject faults that emulate hardware
transient faults. Very often, faults are injected using Software Implemented Fault

 Component-Based Software Certification Based on Experimental Risk Assessment 185

Injection (SWIFI) tools, but even these tools just emulate hardware transient faults.
The problem of injecting representative software faults was proposed in [6] in the
context of IBM´s Orthogonal Defect Classification (ODC) [5]. Madeira [29] showed
that typical fault injection tools are unable to inject a substantial part of the type of
faults proposed in [6] and the method requires the knowledge of previous faults in the
target system.

The first practical technique to emulate realistic software faults with acceptable
accuracy was proposed in [9]. This technique named Generic Software Fault Injection
Technique (G-SWFIT) is based on a field study that analyzed and classified software
faults in a variety of open-source programs. We use this technique in our proposal to
evaluate the impact of a failure of a given software component in the overall system.
Section 3.2 presents some details of this technique.

The use of fault injection to estimate risk has not been addressed in the literature,
especially what concerns software risk. To the best of our knowledge, the only work
that used fault injection to estimate software risk is our previous work [32]. In the
present paper we propose the use of experimental risk assessment in the software
certification, including software products based on COTS components that generally
complicate the certification process, as COTS characteristics are often not fully
available.

3 Software Certification Using Experimental Risk Assessment

To certify a software product a complex process is needed to assure the conformity to
software products requirements and a set of documents, general information, test and
validation must be prepared following a specific standard. Certification becomes even
more difficult when COTS components are part of the software system. Regulations
and standards required to certify the software product may not apply to the component
that developers intend to use. It is largely accepted that the use of COTS increases the
probability of system failure [50, 52, 53] and represents a risk to the overall software
system [52]. Thus, risk is one of the most important measures that must be considered
to certify software system.

ISO/IEC 9126 [20] considers risk as an attribute of safety (quality in use metrics).
The proposed certification strategy can help this particular evaluation and ensure that
a software product conforms to a pre-defined level of risk. Other certification
requirements are also necessary but we focus only on the aspects related to the risk
evaluation.

3.1 Quality Model and Evaluation Process

A quality model consists of a set of quality characteristics, each of which is
decomposed into a set of quality sub-characteristics. A set of characteristics and sub-
characteristics made ISO/IEC 9126 [20] a quality model that focuses on software
product and group these characteristics and sub-characteristics on internal quality,
external quality and quality in use.

Our work is focused in metrics of quality in use as we are interesting in the
evaluation of the quality of a COTS component when it is integrated in a specific

186 R. Moraes et al.

software system. Safety is a quality in use sub-characteristic and considers risk as an
attribute. Our work can help to obtain a relative measure of this specific attribute. As
a first approach, this relative measure does not represent the real software risk, but it
is useful to compare with a threshold that considers its limitation or help in choosing
among several COTS components (that provide the same functionality) the best one
to compose the specific software.

ISO/IEC 14598 [19] can be used in conjunction with ISO/IEC 9126. ISO/IEC
14598 guides the planning and the execution of a evaluation process of software
quality product. According to ISO/IEC 14598 the fundamental characteristics
expected in the software products evaluation process are repeatability (same product,
with the same evaluation specification as done by the same evaluator, must produce
results that can be accepted as identical), reproducibility (repeated evaluation of a
given product by different evaluators must produce identical results), impartiality (the
evaluation must not be influenced by any result in particular) and objectivity (the
results are not influenced by evaluator’s feelings or opinions). The Evaluation Process
as proposed by ISO/IEC 14598 standard encompasses five activities: Evaluation
Requirement Analysis, Evaluation Specification, Evaluation Design, Carrying out
Evaluation and Conclusion.

3.1.1 Evaluation Requirement Analysis
This activity presents three sub-activities: (i) to establish the evaluation purpose; (ii)
to identify products types to be evaluated; (iii) to specify quality model.

Figure 1 presents a schema that shows these activities for our case and emphasized
the quality in use metrics, particularly in safety metrics that are the focus of our
quality model.

Fig. 1. Evaluation Requirements Analysis Activities

Evaluation Requirement
Analysis

To Establish the Evaluation Purpose

To measure in a quantitative way the risk of using a COTS
for the system where this COTS is integrated

To Identify Products Types to be Evaluated

COTS components that are integrated in any kind of software system

To Specify Quality Model

Safety (particularly Risk – Quality in Use Metrics – ISO/IEC 9126-4)

Quality in Use

Effectiveness Productivity Safety Satisfaction

To present acceptable
levels of risks of damages

software or to the
environment in a context

of specified use

 Component-Based Software Certification Based on Experimental Risk Assessment 187

3.1.2 Evaluation Specification
Evaluation Specification activity also presents three sub-activities: (i) to select
metrics; (ii) to establish the score level; (iii) to establish the judgment criteria.

The metric chosen was the estimation of the risk represented by use of a given
COTS in the software product under certification. Note that the value resulting from
the estimation of risk should not be interpreted as an absolute estimation of the
probability of failure. Instead it should be understood as a metric on risk mainly
intended for comparison purposes. Despite our focus on COTS, the technique can
actually be applied to any component of the target system.

Our goal is to provide a quantitative measure of the risk of system S having a
failure (e.g., to produce erroneous results, or to experience a safety failure, or a timing
failure, or a security failure, or become unavailable, etc.) due to a faulty behavior in
component C caused by the activation of a residual software fault f in that component.
Equation (1) shows how to estimate the risk.

 RiskC = prob(fC) * cost(fC) (1)

The term prob(fC) represents the likelihood of the existence of residual software
faults in component C, i.e., corresponds to the component fault-proneness. To
estimate this likelihood we propose the use of well-established software complexity
metrics [28, 47] and a logistic regression analysis based on these metrics [4]. The
term cost(fC) represents the impact of the activation of faults in component C, in this
work measured by software fault injection. If the injection of faults in a given
component shows that a large percentage of faults cause a strong impact in the system
(high cost(f)) and the likelihood of faults in that component is high (high prob(f)),
then the component represents a high risk.

A very important aspect in risk assessment is the probability of the activation of the
residual faults. This probability is strongly dependent on the workload, the operational
profile, and the architecture of the component and cannot be easily modeled by static
analysis alone (and details of the component architecture may not be available). In our
methodology the fault activation probability is actually evaluated during the fault
injection experiments. This is, in fact, an intrinsic aspect of the fault injection
experiments: the fault is injected and its activation/non-activation is a consequence of
the workload and execution profile and the internal component architecture.

Residual Fault Likelihood Estimation

Our work elaborates from previous proposals [4, 47, 35, 32] to estimate prob(f) and
follows a model based on logistic regression. Logistic regression [15] was the used
statistical analysis to address the relationship between metrics and the fault-proneness
of components. Logistic regression gives to each independent variable (e.g.
complexity metrics), also called “regressor”, an estimated regression coefficient βi,
which measures the regressor contribution to variations in the dependent variable (e.g.
the failure likelihood).

To estimate the prob(f) we need to identify which metrics are relevant. We also
need to select which of them is best suited to the evaluation of the software
complexity. We start by considering the cyclomatic complexity (Vg measures the
control flow complexity of a program) as regressors for prob(f) and we added number

188 R. Moraes et al.

of parameters, number of returns, maximum nesting depth, program length and
vocabulary size [14]. The accuracy of the results obtained in the experiments was
evaluated through the analysis of bug reports available from open software initiatives
(see [31]). Halstead’s metrics and Vg measure two distinct program attributes [35]
leading to a better fault prediction capability [28]. Considering six metrics, the
probability that a component has a residual fault is given by equation (2).

)...exp(1

)...exp(
)(

6611

6611

XX

XX
fprob

ββα
ββα
++++

+++= (2)

In the above equation, Xi represents the product metrics (independent variables)
and α and βi the estimated logistic regression coefficients (see more details in [32]). In
the case of a large component composed by sub-components, we have to use the
prob(f) combined with the complexity weight of each sub-component in the global
component. This is obtained by equation (3), where Metricsi represents any of the
available metrics for each component i. The chosen metric can be the one that best
represent the system characteristics (for example, maximum nesting depth if the
system has several nested structures).

)/(*)()(∑∑= iiig MetricsMetricsfprobfprob (3)

Failure Cost Estimation

To estimate the cost (or impact) of the activation of faults in component we used G-
SWFIT technique [9] to inject software faults. G-SWFIT is based on a set of fault
injection operators that reproduce directly in the target executable code the instruction
sequences that represent most common types of high-level software faults. These fault
injection operators resulted from a field study that analyzed and classified more than
600 real software faults discovered in several programs, identifying the most common
(the “top-N”) types of software faults [10] that are presented in Table 1 and used in
the present paper. The representativeness of the faults injected ensures that the fault
injection experiments represent the activation of faults that are likely to exist in the
component.

The analysis of the target code is performed by G-SWFIT tool which identifies the
places where a realistic software fault could in fact exist. The distribution of the
number of fault injected in each component is based in our previous proposal [31]
based on column 3 of Table 1.

The evaluation of This impact is translated in the following failure modes: Hang –
the application is not able to terminate in the pre-determinate time; Crash – the
application terminates abruptly before the workload complete; Wrong – the cost of
component failures is done by injecting one fault at the time and the cost is measured
as the impact of each fault injected in the component in the whole system. workload
terminates but the results are not correct; Correct – there are no errors reported and
the result is correct.

 Component-Based Software Certification Based on Experimental Risk Assessment 189

Table 1. Most frequent fault types found in [10]

Fault
types

Description % of total
observed

ODC classes

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm
MFC Missing function call 8.64 % Algorithm
MLAC Missing "AND EXPR" in expression used as branch condition 7.89 % Checking
MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking
MLPC Missing small and localized part of the algorithm 3.19 % Algorithm
MVAE Missing variable assignment using an expression 3.00 % Assignment
WLEC Wrong logical expression used as branch condition 3.00 % Checking
WVAV Wrong value assigned to a value 2.44 % Assignment
MVI Missing variable initialization 2.25 % Assignment
MVAV Missing variable assignment using a value 2.25 % Assignment
WAEP Wrong arithmetic expression used in parameter of function call 2.25 % Interface
WPFV Wrong variable used in parameter of function call 1.50 % Interface

 Total faults coverage 50.69 %

When a software fault is injected in a given component, that fault may or may not a

cause faulty behavior in the component. Furthermore, only a fraction the faults that
cause erroneous behavior in the component will cause the system to fail, as the
remaining faults are either tolerated or have no visible effect. This means that the
results measured by using fault injection already include the probability of fault
activation (and consequent deviation in the component behavior) and the consequence
of a failure (for example, the probability that the system crash).

Once we have the estimation of risk computed as showed in equation (1) we need
to determine if the component conforms to the desired level of risk (a threshold value
that represents the acceptable risk to the system under analysis). The accept threshold
of the risk level is strongly dependent on the type of the software product and the
context in which this software is used. A general-purpose threshold value is difficult
to determine as it is linked to commercial agreements or legal requirements. When
users require the assurance (certification) that a specific software product conforms to
the requirements for its business or application context, the threshold value (risk
level) must be considered as part of the information and agreements firmed between
users and evaluators when certification request is done for the competent agency. The
risk value computed using equation (1) must be compared with this threshold value.
The verdict of the certification is success if risk value is less than the threshold
stipulated; otherwise the software product is not certified for the desired level of risk.

Another use of the risk assessment as proposed in this work is the comparison
among several versions of the system when the COTS component is replaced with a
functionally similar one. In this case, the goal of the certification process is to
establish the best COTS for a specific software system. When several COTS
component provides the same functionality we can integrate each COTS one at a time
and evaluate the software system risk. Based on the results of risk assessment we can
determine the best COTS for the specific software system, i.e., we should choose
the component that presents the lower risk when integrated in the software system.
Figure 2 presents the Evaluation Estimation Activities.

190 R. Moraes et al.

Evaluation Specification

To Select Metrics
Quality in Use Metrics – Safety

Risk: to present acceptable levels of risks of damages software or to the
environment in a context of specified use

RiskC = prob(fC) * cost(fC)

To Establish the Scoring Level

To be established based on the application and the solicitant needs

To Establish the Judgment Criteria

To be established based on the application and the solicitant needs

Fig. 2. Evaluation Specification Activities

3.1.3 Evaluation Design
The goal of this activity is to establish the evaluation plan. The plan presents the steps
to follow in order to obtain the metrics defined in the evaluation specification. In our
case, these steps are presented in Table 2, in order to obtain fault density (first
column) and cost (second column).

3.1.4 Performing the Evaluation
This activity presents three sub-activities: (i) to obtain the measurements; (ii) to
compare with the established criteria; (iii) to evaluate the results. These sub-activities
are demonstrated using the case study in the next section.

Table 2. Steps to assess the Terms of the Risk Equation

Fault Density Likelihood Estimation Cost (or Impact) Estimation

1. Evaluate the complexity metrics of each
component

1. Scan each component code in order to define the
fault injection local and faults types to be injected
(by using GSWFIT tool)

2. Adopt fault density ranges accepted by the
industry community as a preliminary estimation of
fault densities [38] as a starting estimation for the
logistic regression (this preliminary estimation
replaces the field observation)

2. Plan the faults to be injected in each component,
using the faults types and the distribution presented
in Table 1 (third column)

3. Use the binomial distribution 3. Integrate a component into the software system
4. Apply the regression using the value obtained
from natural logarithm of the preliminary fault
density and the chosen metrics aim to obtain the
coefficients for each component

4. Apply the fault injection campaign (one fault at a
time) as planned for the specific component

5. Estimate the likelihood of fault of each
component by using the computed coefficients in
previous step by using the logistic equation
presented in equation (4)

5. Collect the results of fault injection campaign in
accordance of the failure mode presented in Section
3.1.2

6. Estimate the likelihood of fault density for each
component as presented in equation (5) when the
specific component is composed by several sub-
components

6. If there is one more component to be integrated
return to step 3.

 Component-Based Software Certification Based on Experimental Risk Assessment 191

4 Case Study

The software application is a real-time satellite data handling system (DHS) named
Command and Data Management System (CDMS). CDMS is responsible for
managing all data transactions between ground systems and a spacecraft. The CDMS
runs a mission scenario where a space telescope is being controlled and data collected
is sent to ground system.

This application is written in C and use a COTS component, which is a real-time
operating system (OS). In order to illustrate our proposal in a component-based
software, we consider two COTS, with similar functionality but different features: the
RTEMS [41] and the RT-Linux[26] real-time OS. The ground control software is
hosted in a computer running Linux. To evaluate the software risk, each component is
integrated into the system and the methodology is applied. Figure 3 shows the satellite
data handling system setup. It also represents the fault injection target, which is the
real-time operating system (representing the COTS component: RTEMS or RTLinux,
as we have performed two sets of experiments).

The CDMS system is composed by six subsystems (partially shown in Figure 3):
Packet Router (PR), Power Conditioning System (PCS), On Board Storage (OBS),
Data Handling System (DHS), Reconfiguration Manager (RM), and Payload (PL).
The CDMS sends telemetry information for each command sent by the ground
control. The timing of the commands and the contents of the telemetry information
are used to detect the system correctness/failure.

Gro
undCo
ntrol

Gro
undCo
ntrol

RTRT

D
HS

D
HS

RS232

RR LL
…

Interface
faults at the API
calls

Telemetry

Commands

Li
nux

Li
nux

Gro
undCo
ntrol

Ground

Control

RTRTEMS or RTLinux

D
HS

DHS

CDMS

R

PR

L

PL…
Software fault

Injection

(G-SWFIT)

Li
nux

Linux

Fig. 3. CDMS Satellite Data Handling setup overview

4.1 Obtaining the Measurements

In order to evaluate the risk of using a COTS into the system two measurements must
be obtained: the fault density likelihood estimation and the impact (cost) of fault
activation estimation. Both measurements are obtained following the steps presented
in Table 2.

4.1.1 Fault Density Likelihood Estimation
RTLinux and RTEMS are composed respectively by 2211 and 1257 modules with a
total of 85108 and 63258 lines of code. The regression analysis was applied (as
explained in section 3.1.2. See more details in [31] and [32]) and the regression

192 R. Moraes et al.

coefficients (βi) were applied in the logistic equation (refer to equation (2) in
section 3.1.2.) to obtain the estimated prob(f) of each component. The global probg(f)
estimated for RTLinux is 6.50% and for RTEMS is 7.49% (refer to equation (3) as
explained in section 3.1.2).

4.1.2 Cost Estimation
Our current results correspond to 231 faults injected in the RTMES and 341 faults
injected in the RTLinux version of CDMS. In both cases, the software faults have
been injected in the operating system code (RTMES or RTLinux) using the G-SWFIT
technique as explained in section 3.1.2. Table 3 and Figure 4 present the failure
modes obtained in the fault injection campaign in the system integrating both
operating systems.

Table 3. Failure Modes and Results

RTEMS Results

74%

5%

9%

12%
Correct

Wrong

Crash

Hang

RTLinux Results

50%

1%

25%

24% Correct

Wrong

Crash

Hang

Fig. 4. Fault Injection Results

4.1.3 Risk Evaluation
Table 4 presents the risk evaluation of the system using RTEMS and using RTLinux.
The risk was evaluated considering each failure mode that represents erroneous
behavior and the combination of all the erroneous failure modes (represented by the
column “Incorrect Behavior” in Table 4). Note that this value resulting from the
application of the methodology should not be interpreted as an absolute estimation of
the probability of failure. Instead it should be understood as a metric on risk mainly
intended for comparison.

RTEMS RTLinux Failure Mode
Levels # % # %

Correct 170 74 170 50
Wrong 12 5 3 1
Crash 21 9 86 25
Hang 28 12 82 24
Total 231 100 341 100

 Component-Based Software Certification Based on Experimental Risk Assessment 193

Table 4. The Risk Evaluation – Failure Mode

Crash Wrong Hang Incorrect Behavior
Component prob(f)

cost(f) risk cost(f) risk cost(f) risk cost(f) risk
RTEMS 0.0749 0.09 0.67% 0.05 0.37% 0.12 0.89% 0.26 1.94%
RTLinux 0.0650 0.25 1.62% 0.01 0.06% 0.24 1.56% 0.50 3.25%

4.2 Compare with the Established Criteria and Evaluate the Results

To certify a software product in what concerns the risk, we need to compare the risk
estimation obtained using our approach with the established threshold. The agreement
about the threshold value to certify the software depends on the software product-line.
In some areas the threshold value is determined by law (e.g. software for medical
equipment, avionics, etc.), other areas that is not too critical, the threshold can be an
agreement between solicitant and the certification authority. In addition, our proposal
is a metric on risk and a threshold must be established by the solicitant. The threshold
value can be a unique value to compare with the incorrect behavior or can be different
values to compare with the specific type of incorrect behavior (crash, wrong or hang
risk). For example, considering the results presented in Table 4, if the threshold to
certify the software would be an estimated risk lower than 2,5%, only the system
using RTMS would be certified, as the assessed risk of using RTLinux in the system
is higher than the threshold.

Another use of our approach is to compare and choose the best component for a
specific software product. When there are several components that provide the same
functionality the solicitant should be interested to know which one of them is more
appropriated for his system. In this case, the certification must indicate the component
that presents the lower risk.

The results presented in this work, for the CDMS system, indicate that RTLinux
represents a higher risk than RTEMS for most of the failure modes considered, and
thus, RTMES seems to be a better choice for this application, i.e., the CDMS version
that integrates RTEMS should be certified. One exception is related to the wrong
results, as RTLinux represents a lower risk of wrong results when compared to the
RTEMS (i.e., the RTLinux version causes fail silent behavior more frequently).

5 Conclusion and Future Work

This work presents a first proposal to certify a component-based system using
experimental risk assessment. Software metrics and software fault injection are
combined to provide the software risk evaluation that is the based measurement of the
proposed certification, providing a repeatable and reliable metric for software product
certification. The cost of the failures of the component is evaluated through the
observation of the system behavior due to the injection of realistic and representative
faults and fault distribution in the component under evaluation. Several software
metrics are considered and logistic regression analysis was used to fit the expression
of the fault probability with these metrics. Our risk equation considers the fault
probability, the probability of fault activation, the probability of consequent deviation

194 R. Moraes et al.

in the component behavior and the consequence of a failure to model the fact that
some faults are not activated or tolerated.

Two alternative versions of CDMS that integrate RTEMS and RTLinux (one at
each time) were submitted to the proposed certification process. The results showed
that it is possible to obtain a metric on risk to be used to certify a component
considering static (software metrics) and dynamic aspects (software behavior during
runtime) when this component is integrated in a specific software system. Besides the
use of the results obtained to verify the component risk based on a threshold values
established by the solicitant, the knowledge about this metrics on risk can be used to
restruc-tured, wrapping modules or implement new architecture solutions to achieve
the desired risk level.

The proposed methodology can also be used to improve the reliability of the target
system as it helps system developers/integrator to select the best component (from a
pool of alternatives) to integrate in the target system. In our case study, if the proposal
is to choose the best component between RTEMS and RT-Linux to integrate into
CDMS system, RTEMS should be selected since it presents less risk to CDMS.

Our research group is working to refine the risk evaluation considering other
aspects in order to obtain a more realistic measure of software component risk,
improve the certification measurement and define threshold value for some product
line to improve certification of software system based on risk assessment.

Acknowledgments. The authors thank to CAPES/GRICES, CNPq and FAPESP to
partially support this work. We thank also to MSquared Technologies for gracefully
providing the full version of RSM tool [40], and Testwell Oy Ltd [49] for CMT++
and CMTjava tools.

References

[1] Amland, S.: Risk-based Testing: Risk analysis fundamentals and metrics for software
testing including a financial application case study. The Journal of Systems and
Software 53, 287–295 (2000)

[2] Arlat, J., et al.: Fault Injection and Dependability Evaluation of Fault Tolerant Systems.
IEEE Transaction on Computers 42(8), 919–923 (1993)

[3] Bach, J.: Heuristic Risk-Based Testing. In: Software Testing and Engineering Magazine
(1999)

[4] Basili, V., Briand, L., Melo, W.: Measuring the Impact of Reuse on Quality and
Productivity in Object-Oriented Systems. Technical Report, University of Maryland,
Dep. Of Computer Science, CS-TR-3395 (1995)

[5] Chillarege, R., Orthogonal Defect Classification, Ch. 9 of Handbook of Software
Reliability Engineering, M. Lyu Ed., IEEE Computer Society, McGraw-Hill, (1995).

[6] Christmansson, J., Chillarege, R.: Generation of an Error Set that Emulates Software
Faults-Based on Fields Data. In: Proc. of 26th Int. Symp. on Fault-Tolerant Computing,
Sendai, Japan, pp. 304–313 (1996)

[7] Colombo, R., Guerra, A.: The Evaluation Method for Software Product. In: Proc. of Int.
Conf. on Software \& Systems Engineering \& Applications - ICSSEA '2002, Paris,
France (2002)

 Component-Based Software Certification Based on Experimental Risk Assessment 195

[8] Councill, B.: Third-Party Certification and Its Required Elements. In: Proc. of The 4th
Workshop on Component-Based Software Engineering (CBSE), Springer, Heidelberg,
Canada. Lecture Notes in Computer Science (LNCS) (2001)

[9] Durães, J.: Madeira, H. Definition of Software Fault Emulation Operators: A Field Data
Study. In: Proc. of The International Conference on Dependable Systems and Networks -
DSN2003, pp. 105-114, San Francisco, USA (2003) (William Carter Award for the best
student paper)

[10] Durães, J., Madeira, H.: Emulation of Software Faults: A Field Data Study and a
Practical Approach. IEEE Transactions on Software Engineering 32(11) (November
2006), ISSN: 0098-558

[11] El Emam, K., Benlarbi, S., Goel, N., Rai, S.: Comparing Case-based Reasoning
Classifiers for Predicting High Risk Software Components. Journal of Systems and
Software 55(3), 301–320 (2001)

[12] EN 45020 General Terms and Definitions Concerning Standardization and Related
Activities. CEN, Brussels (1993)

[13] Fenton, N., Ohlsson, N.: Software Metrics and Risk. In: Proc. of The 2nd European
Software Measurement Conference (FESMA 99) (1999)

[14] Halstead, M.: Elements of Software Science. Elsevier Science Inc, New York (1977)
[15] Hosmer, D., Lemeshow, S.: Applied Logistic Regression. John Wiley \& Sons, Chicester

(1989)
[16] Health & Safety Commission The use of computers in Safety-critical Applications.

Technical Report, UK (1998)
[17] Hudepohl, et al.: EMERALD: A Case Study in Enhancing Software Reliability. Proc. of

IEEE Eight Int. Symposium on Software Reliability Engineering - ISSRE98 98, 85–91
(1998)

[18] ISO/IEC 12119. International Organization For Standardization ISO/IEC 12119,
Information Technology - Software packages - Quality requirements and testing, p. 16,
Geneve (1994)

[19] ISO/IEC 14598-1. International Organization For Standardization ISO/IEC 14598-1
Information Technology - Software product evaluation - Part 1: General Overview;
Geneve ISO (1999)

[20] ISO/IEC 9126-1. International Organization For Standardization ISO/IEC 9126-1,
Software Engineering - Software product quality - Part 1: Quality Model; Geneve ISO
(2001)

[21] ISO/IEC 25051 Software Engineering - Requirements for quality of Commercial Off-
The-Shelf (COTS) software product and instructions for testing, Final Draft International
Standard (2006)

[22] Iyer, R.: Experimental Evaluation. In: Special Issue FTCS-25 Silver Jubilee, 25th IEEE
Symposium on Fault Tolerant Computing, pp. 115–132 (1995)

[23] Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and
Organization for Business Success. Addison-Wesley, Longman (1997)

[24] Khoshgoftaar, et al.: Process Measures for Predicting Software Quality. In: Proc of High
Assurance System Engineering Workshop - HASE’97 (1997)

[25] Leveson, N.: Safeware, System Safety and Computers. Addison-Wesley Publishing
Company, Reading (1995)

[26] The linux kernel. Accessed on Feb/06 (2006), http://www.kernel.org
[27] Lyu, M., Chen, J., Avizienis, A.: Experience in Metrics and Measurements for N-Version

Programming. Int. Journal of Reliability, Quality and Safety Engineering 1(1), 41–62
(1994)

196 R. Moraes et al.

[28] Lyu, M.: Handbook of Software Reliability Engineering. IEEE omputer Society Press,
McGraw-Hill, Los Alamitos (1996)

[29] Madeira, H., Vieira, M., Costa, D.: On the Emulation of Software Faults by Software
Fault Injection. In: Proc. of The Int. Conf. on Dependable Systems and Networks, NY,
USA (2000)

[30] Menzies, T., Greenwald, J., Frank, A.: Learning Defect Predictors. Journal (submitted,
2006), http://menzies.us/, accessed February/2006

[31] Moraes, R., Durães, J., Martins, E., Madeira, H.: A field data study on the use of software
metrics to define representative fault distribution. In: Proc. of The International
Conference on Dependable Systems & Networks - DSN2006, IEEE Computer Society
Pres, Los Alamitos (2006)

[32] Moraes, R., Durães, J., Barbosa, R., Martins, E., Madeira, H.: Experimental Risk
Assessment and Comparison using Software Fault Injection. In: The International
Conference on Dependable Systems and Networks - DSN 07, Edimburgo (2007)

[33] Morris, J., Lee, G., Parker, K., Bundell, G., Lam, C.: Software Component Certification.
IEEE Computer 34(9), 30–36 (2001)

[34] Musa, J.: Software Reliability Engineering. McGraw-Hill, New York (1996)
[35] Munson, J., Khoshgoftaar, T.: Software Metrics for Reliability Assessment. In: Michael,

R. (ed.) Handbook of Software Reliability Engineering, IEEE Comp. Society Press, Los
Alamitos (1995)

[36] Kitchenham, B., Pfleeger, S., Fenton, N.: Towards a framework for software
measurement validation. IEEE Transactions on Software Engineering 21(12), 929–944
(1995)

[37] Rodríguez-Dapena, P.: Software Safety Certification: A Multidomain Problem. IEEE
Software 16(4), 31–38 (1999)

[38] Rome Laboratory (RL). Methodology for Software Reliability Prediction and
Assessment. Technical Report RL-TR-92-52, vol. 1 and 2 (1992)

[39] Rosenberg, L., Stapko, R., Gallo, A.: Risk-based Object Oriented Testing. In: Proc of.
13th International Software / Internet Quality Week-QW, San Francisco, California, USA
2 (2000)

[40] Resource Standard Metrics, Version 6.1(2005),
 http://msquaredtechnologies.com/m2rsm/rsm.htm. Last access

[41] Real-Time Operating System for Multiprocessor Systems. (February 2006) (accessed),
http://www.rtems.com

[42] Rushby, John Modular Certification. Langley Research Center. Report Number: NAS
1.26212130, NASA CR-2002-212130, SRI-11003.

[43] Sherer, S.: A Cost-Effective Approach to Testing. IEEE Software 8(2), 34–40 (1991)
[44] Singpurwalla, N.: Statistical Methods in Software Engineering: Reliability and Risk, 1st

edn. Springer, Heidelberg (1999)
[45] Stafford, J., Wallnau, K.: Is Third-Party Certification Necessary? In: Proceedings of the

4th ICSE Workshop on Component-Based Software Engineering, Toronto, Canada, May,
Toronto, Canada, pp. 13–17 (2001)

[46] Systems Integration Requirements Task Group Certification Considerations for Highly-
Integrated or Complex Aircraft Systems, Technical Report AS-1C, ASD, SAE (1996)

[47] Tang, M., Kao, M., Chen, M.: An Empirical Study on Object-Oriented Metrics. In:
Proceedings of the Sixth International Software Metrics Symposium, pp. 242-249 (1999)

[48] Nuclear Safety Directorate Computer Based Safety Systems. Technical Assessment
Guide T/AST/046, UK, (2000)

[49] Testwell Oy Ltd. Accessed on March/06 (2006), http://www.testwell.fi

 Component-Based Software Certification Based on Experimental Risk Assessment 197

[50] Voas, J.: Certifying Off-the-Shelf Software Components. IEEE Computer 31(6), 53–59
(1998)

[51] Voas, J.: Certifying Software for High-Assurance Environments. IEEE Software 16(4),
48–54 (1999)

[52] Weyuker, E.: Testing Component-Based Software: A Cautionary Tale. IEEE Software
(1998)

[53] Yang, Y., Boehm, B., Clark, B.: Assessing COTS Integration Risk Using Cost
Estimation Inputs. In: Proc. of 28th International Conference on Software Engineering,
Shangai, China (2006)

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 198–211, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integrated Intrusion Detection in Databases

José Fonseca, Marco Vieira, and Henrique Madeira

CISUC, Department of Informatics Engineering
University of Coimbra – Portugal

josefonseca@ipg.pt, mvieira@.dei.uc.pt, henrique@dei.uc.pt

Abstract. Database management systems (DBMS), which are the ultimate layer
in preventing malicious data access or corruption, implement several security
mechanisms to protect data. However these mechanisms cannot always stop
malicious users from accessing the data by exploiting system vulnerabilities. In
fact, when a malicious user accesses the database there is no effective way to
detect and stop the attack in due time. This practical experience report presents
a tool that implements concurrent intrusion detection in DBMS. This tool
analyses the transactions the users execute and compares them with the profile
of the authorized transactions that were previously learned in order to detect
potential deviations. The tool was evaluated using the transactions from
a standard database benchmark (TPC-W) and a real database application.
Results show that the proposed intrusion detection tool can effectively detect
SQL-based attacks with no false positives and no overhead to the server.

Keywords: Databases, security, intrusion detection.

1 Introduction

Traditional database security mechanisms offer basic security features such as
authentication, authorization, access control, data encryption, and auditing. However,
these mechanisms do not assure protection against the exploitation of vulnerabilities
in database management systems (DBMS) and are very limited in defending data
attacks from the inside of the organization. In fact, as typical database security
mechanisms are not primarily designed to detect intrusions (they are designed to
avoid the intruder’s access to the data), there are many cases where the execution of
malicious sequences of SQL1 commands (transactions) cannot be detected or avoided.

The general lack of intrusion detection features in typical DBMS is an important
limitation when it is necessary to assure a strong data security policy. In fact,
intrusion detection in DBMS has not been studied much, in a clear contrast to what
has happened in operating systems and networking fields, where many intrusion
detection approaches have been proposed. However, malicious actions in a database
application may not be seen as malicious by existing intrusion detection mechanisms
at the network or the operating system levels. Furthermore, inside attacks are
particularly difficult to detect and isolate, as the attacks are carried out by legitimate

1 SQL stands for Structured Query Language, the relational language used by relational DBMS

[1].

 Integrated Intrusion Detection in Databases 199

users that may have access rights to data and system resources. In addition, daily
routine and long established habits tend to relax many security procedures. Even
simple things such as choosing strong passwords and periodically purging unused
database accounts are often neglected in many organizations [2]. This way, a practical
tool for intrusion detection in DBMS that detects malicious behavior from
applications and users will provide an extra layer of security that cannot be assured by
classic security mechanisms.

According to a FBI Computer Crime and Security Survey [3] in 2005,
approximately 45% of the inquired entities had reported unauthorized access to
information estimating a loss of $31.233.100 and a loss of $30.933.000 due to theft of
proprietary information. Up to 56% reported unauthorized use of computer systems
and 13% did not know if they had been attacked. Furthermore, 95% of the inquired
entities reported more than 10 web site incidents. These figures show the relevance of
an intrusion detection mechanism at DBMS level.

Masquerade attacks where people hide their identity by impersonating other people
on the computer are one of the most frequent forms of security attacks [4], including
in the database domain. Another common database attack is SQL injection in web
applications [5], where unchecked input is sent to a back-end database for execution.
The attacker can perform this by simply changing the SQL query sent to the server,
accessing sensitive data.

The intrusion detection tool presented in this practical experience report adds
concurrent intrusion detection to DBMS. This way, data security attacks can be
detected and stopped immediately while the mechanism may call the attention of the
database administrator (DBA) by sending an email or an SMS message). This tool,
named IIDD - Integrated Intrusion Detection in Databases, works in two modes:
transactions learning and intrusion detection. During transactions learning, the IIDD
extracts the information it needs directly from the network packets sent from client
applications to the database server using a network sniffer. The result is the directed
graph representing the sequence of SQL commands that composes the authorized
transactions. The learned graph is used later on by the concurrent intrusion detection
engine. When an intrusion is detected an alarm is raised and, depending on the tool
configuration, the database connection between the intruder and the server may be
killed. In this case the connection is abruptly broken, and the database automatically
performs a rollback of the malicious transaction. An important aspect is that this tool
can be easily used in any commercial-off-the-shelf (COTS) DBMS.

The structure of the paper is as follows. Section 2 presents our approach to
intrusion detection in DBMS. Section 3 describes the proposed tool. Section 4
presents two examples of utilization of the intrusion detection tool and Section 5
concludes the paper.

2 Intrusion Detection Approach

The main goal of security in DBMS is to protect the system and the data from
intrusion and unauthorized accesses, even when the potential intruder gets access to
the machine where the DBMS is running. To protect the database from intrusion,
the DBA must prevent and remove potential attacks and vulnerabilities. System

200 J. Fonseca, M. Vieira, and H. Madeira

vulnerabilities are an internal factor related to the set of security mechanisms
available (or not available at all) in the system, the correct configuration of those
mechanisms, which is a responsibility of the DBA, and the hidden flaws (bugs) in the
system implementation. Vulnerability prevention consists of guarantying that the
software used has the minimum vulnerabilities possible and this can be achieved by
using adequate DBMS software. On the other hand, because the effectiveness of
security mechanisms depends on their correct configuration and use, the DBA must
correctly configure them by following administration best practices. Vulnerability
removal consists in reducing the vulnerabilities found in the system. The DBA must
pay attention to the new security patches released by software vendors and install
those patches as soon as possible. Furthermore, any configuration problems detected
in the security mechanisms must be immediately corrected.

Security attacks are an external factor that mainly depends on the intentionality and
capability of humans to maliciously break into the system taking advantage of
potential vulnerabilities. The prevention against security attacks includes all the
measures needed to minimize (or eliminate) the potential attacks against the system.
On the other hand, attack removal is related to the adoption of measures to stop
attacks that have occurred before.

General methods for intrusion detection in computer systems are based either on
pattern recognition or on anomaly detection. Pattern recognition is the search for
known attack signatures in the commands executed. Anomaly detection is the search
for deviations from an historical profile of good commands.

Schonlau et al [4] evaluated several anomaly detection approaches and concluded
that methods based on the idea that commands not previously seen in the training data
may indicate an intrusion attempted, are among the most powerful approaches for
intrusion detection. Our intrusion detection approach uses this idea, extending it to a
set of SQL commands. However, unlike intrusion detection approaches used in
distributed systems that usually rely on sets of predefined commands (normally a
small number) or assume the commands are unrelated, in our approach, the SQL
commands and their order in each database transaction are relevant.

In spite of all the classical security mechanism developed in the database area,
current DBMS are not well prepared for high-assurance privacy and confidentiality
[6]. A very important component for the new generation of security aware DBMS is
an intrusion detection mechanism [7]. Recent works have addressed concurrent
intrusion detection (and attack isolation) in DBMS, and this issue is clearly getting
more and more attention.

DEMIDS [8] is a misuse detection system tailored to relational database systems. It
uses audit logs to derive user profiles describing typical behavior of users in the
DBMS. Chung introduces the notion of distance measure and frequent item sets to
capture the working scopes of users using a data mining algorithm. In [9] a real-time
intrusion detection mechanism based on the profile of user roles is proposed. An
intrusion attack and isolation mechanism was proposed in [10]. This mechanism uses
triggers and transaction profiles to keep track of the items read and written by
transactions and isolates attacks by rewriting user SQL statements. The use of data
dependency relationships and Petri-Nets to model normal data update patterns was
proposed in [11] to detect malicious database transactions. DIDAFIT [12] works by
matching SQL statements against a known set of valid transactions fingerprints. The

 Integrated Intrusion Detection in Databases 201

algorithm consists in representing SQL as regular expressions using heuristics to
assure a low level of false positives. Vieira and Madeira [13] focused on the detection
of malicious DBMS transactions by using database audit logs to obtain the sequences
of SQL commands executed by users, with the assumption that the transaction
profiles was known in advance, and provided manually to the detection mechanism.

Although intrusion detection has already been addressed in the works introduced
above, intrusion detection at DBMS level continues to be an open issue. The purpose
of the present work is to provide a generic tool that can be used in any database
application. This way, the proposed intrusion detection tool is available at [14] for
download and public utilization.

2.1 Database Transactions Profiles

In a typical database environment transactions are programmed in the client database
applications, which means that the set of transactions remains stable, as long as the
application is not changed. For example, in a banking database application users can
only perform the operations available at the application interface (e.g., withdraw
money, balance check account, etc). No other operation is available for the end-users
(e.g., end-users cannot execute ad-hoc SQL commands). This way, it is possible to
use transaction profiles for intrusion detection with a reduced risk of false alarms.

Our intrusion detection tool uses the profile of the transactions implemented by the
database applications (authorized transactions) to identify user attempts to execute
unauthorized SQL commands. A database transaction is represented as a directed
graph describing the different execution paths (sequences of selects, inserts, updates,
deletes, and stored procedure invocations) from the beginning of the transaction to the
commit or rollback commands. The nodes in the graph represent commands and the
arcs represent the valid execution sequences. Depending on the data being processed
several execution paths may exist for the same transaction and an execution path may
include cycles representing the repetitive execution of sets of commands (a typical
example of cycles in a transaction is the insertion of a variable number of lines in a
customer’s order). The transaction ends with a commit or rollback command. The
directed graph representing the profile of valid transactions is used to detect
unauthorized transactions, which are seen as invalid sequences of SQL commands.
This is done by concurrently analyzing the transactions the users execute and
comparing them to the profile of the authorized transactions that were previously
learned. To learn the profiles and to detect the malicious transactions the following
information is required for each command executed:

– User name: name of the user who executes the command;
– Session ID: identification of the session established when the client application

connects to the database server;
– Action executed: text of the SQL command. This includes the identification of

the end of the transaction (that is the start of a new transaction), which is forced by
a commit or a rollback command;

– Time stamp of the action: time stamp of the execution of the SQL command.

An important aspect is that the nodes in the graph do not represent concrete
commands since these may differ slightly in different executions. For example,

202 J. Fonseca, M. Vieira, and H. Madeira

consider the following SQL command to select the data from a given employee:
“SELECT * from EMP where job like 'CLERK' and SAL >1000”. The job and the
salary in the select criteria (job like ? and sal > ?) depend on the targeted data. This
way, instead of considering concrete commands we have to represent those
commands in a generic way. The approach consists of parsing the SQL commands
and removing all the parts that are not generic (e.g., numbers and strings between
quotes are removed). Also, the characters of the command are changed to lowercase.

The proposed intrusion detection technique does not apply to applications that
support the execution of ad-hoc queries, as in this case there are no predefined
transactions. However, ad-hoc queries normally target decision support system and
are not executed in typical database applications, because this type of queries would
ruin the performance of the system. The decision support databases are known as data
warehouses [15] and are physically separated from typical databases, because the type
of queries executed and the data structures used to store data are completely different
from typical databases. End-users that process ad-hoc queries represent a small group
(managers and decision making personnel) that use a specific type of databases (data
warehouses). Data warehouses are periodically loaded with new data that represents
the activity of the business since the last load (normally the periodical loads are done
on a daily basis). This is part of data warehouses life-cycle and follows a predefined
set of rules that are implemented in the loading applications. Our intrusion detection
technique is also applicable in this case because it provides the data warehouse server
with the capability to detect malicious actions that try to modify the data.

2.2 Learning the Authorized Profiles

Transaction learning consists of identifying the authorized transactions and
representing those transactions as a directed graph specifying the sequences of valid
commands. The goal is to automatically learn the transaction profiles obtained
through the reading of the network packets sent by the client applications to the
database server and store them as a directed graph to be used in the detection phase.
Obviously, the learning process must be executed in controlled conditions that should
cover the different database application functionalities and, at the same time, must be
free of intrusion attempts (which would potentially lead to the identification of
malicious transactions as authorized ones). It is worth noting that all the database
transactions must be executed during the learning phase, which should be achieved in
a controlled environment virtually free of intrusion attempts (i.e., without the database
fully open to all the users). There are three ways to obtain the transactions profiles:

– Manual profiling can be easily performed when the DBA knows the execution
profile of the client application and the number and size of the transactions is not
too high. The DBA can create manually the graphs describing the authorized
transactions.

– Concurrently during the normal utilization of the application. In this case special
attention must be taken in order to guarantee that the application is free of attacks
during the learning period. This procedure can be shortened by manually
executing some of the functions of the application.

 Integrated Intrusion Detection in Databases 203

– Running application tests. Database applications are often tested using interface
testing tools that generate exhaustive tests that exercise all the application
functionalities. In most cases these tests are specified by highly-trained testers, but
can also be generated automatically [16, 17].

When an end-user (client) connects to the database a session is established. The

session information travels across the network and the relevant information can be
captured by a well positioned sniffer application. After establishing the session the
user can start executing the client application operations. During execution the
application accesses the database through the network sending SQL commands and
receiving results. The sniffer reads all that flux of information and retains just what it
needs. The capture of information will last until the DBA is confident that all the
transactions implemented by the application have been executed at least one time. The
sniffer can read the network information that is both encrypted or in clear text. To be
able to parse encrypted information, the intrusion detection tool must have access to
the decryption function and key. An alternative is to place the intrusion detection tool
as a proxy, able to perform secure communication with the database client
applications.

One of the key points in the learning phase, and in the detection phase as well, is
the detection of the first command and the last command of a transaction. A
transaction begins when the previous ends, thus the problem is the detection of the
end of a transaction. A transactions is ended explicitly (by a commit or rollback
command) or implicitly (by a Data Definition Language (DDL) statement [1]) by the
application's code. Fig. 1 shows examples of the graphs generated during transactions
learning.

SELECT

WAREHOUSE.ORDER

SELECT
WAREHOUSE.PRODUCT

INSERT
WAREHOUSE.ORDER

INSERT
WAREHOUSE.ORDER-LINE

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

SELECT
WAREHOUSE.PRODUCT

INSERT
WAREHOUSE.ORDER

INSERT
WAREHOUSE.ORDER-LINE

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

DELETE
WAREHOUSE.ORDER-LINE

DELETE
WAREHOUSE.ORDER

UPDATE
WAREHOUSE.CUSTOMER

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

DELETE
WAREHOUSE.ORDER-LINE

DELETE
WAREHOUSE.ORDER

UPDATE
WAREHOUSE.CUSTOMER

COMMIT ROLLBACK

SELECT
WAREHOUSE.PRODUCT

SELECT
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.PRODUCT

SELECT
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK
(a) (b) (c)

Fig. 1. Examples of typical profiles of database transactions

2.3 Detecting Intrusions

After concluding the learning phase the IIDD tool is able to compare the transactions
executed by the users with the authorized profiles described in the transaction graphs.
In this phase every command executed must match a profile. When the first command

204 J. Fonseca, M. Vieira, and H. Madeira

of the transaction is executed the tool searches for all the profiles starting with that
same command, which are marked as candidate profiles for the current transaction.
The next command executed is then compared with the second command of these
candidate profiles. Only those who match remain candidate profiles. This process is
executed over and over until the transaction reaches its end or there are no more
candidate profiles for that transaction. In this latter case the transaction is identified as
malicious. In practice, to detect malicious transactions the IIDD tool implements the
following generic algorithm over the transactions graph:

while (1) do {
 for each new command executed do {
 if user does not have any active transaction then
 /* command is the 1st command in a new transaction */
 obtain list of authorized trans. starting with
 this command;
 else {
 for each valid (authorized) trans. for the user do {
 if the current command represents a valid successor node
 in the transaction graph then
 the command is valid;
 else
 mark the current transaction as a non valid trans.;
 }
 if there are transactions marked as non valid then
 a malicious transaction has been detected;
 }
 }
}

When a malicious transaction is detected one or more of the following actions may be
executed, depending on the DBA choice:

– Notify the DBA about the intrusion. The database intrusion detection mechanism
is able to provide the DBA with relevant information such as the user name, the
time stamp, the database objects damaged, etc. It is also possible to send a
message (email or SMS) to the DBA to call his immediate attention.

– Immediately disconnect the user session in which the malicious transaction was
attempted and prevent it from logging in again.

– Activate a damage confinement and repair mechanism. When available, damage
confinement and repair mechanisms are able to confine the damage and recover
the database to a consistent state previous to the execution of the malicious
transaction. Another possibility is to isolate that transaction from other user
transactions (e.g., by creating a virtual database where the malicious transactions
are executed to prevent spreading wrong or malicious data to the database [10]).

3 The Intrusion Detection Tool

Fig. 2 presents the typical environment needed to run our intrusion detection tool. The
IIDD tool is installed and runs in the Sniffer Computer. The Database Server network
cable must connect to a LAN switch port. The Sniffer Computer must be connected to

 Integrated Intrusion Detection in Databases 205

the span port mirroring of the switch. Switches usually prevent promiscuous sniffing,
however, most modern switches support span port mirroring, which replicates the data
from all ports onto a single port allowing the sniffer to capture the network traffic of
the whole LAN.

The IIDD tool is a two tier application with a back end module and a front end
interface (Fig. 3). All the heavy processing is done in the back end which is
responsible for sniffing the network searching for packets sent to the database, learn
the profiles and detect the intrusions. It is named DBSniffer and was written in C++ to
be able to access the network using raw sockets and processing them at the highest
speed. This program sends messages through the standard output device and creates
several files for future analysis. It is organized into three modules: sniffer, learner and
detector. The IIDD tool can be run in Windows and Linux operating systems (OS)
and can be used in any DBMS as the implementation is generic. Both the learning and
the detection modules use a common function that is responsible for the detection of
network packets.

Fig. 2. Architecture setup

The sniffer is the only DBMS specific component and it is responsible for
capturing network packets. Because the tool is based on autonomous components that
provide well defined interfaces, it is very easy to implement that function for several
DBMS and include it in the tool. For this practical experience report we have chosen
Oracle 10G R2 [18] since it is one of the most representative DBMS on the market.

The sniffer, learner, and detector modules are executed when they are called by the
front end application. The front end is a graphical interface, programmed in Java,
whose function is to configure and launch the back end and to show the results. The
interface has eight groups with different functions: File, Config, Sniffer, Learner,
Detector, Action, Status and Information Panel. A screen shot of the prototype's
interface is shown in Fig. 4.

The Sniffer group starts and stops the sniffer. The sniffer uses raw sockets and
places the network adapter in the promiscuous mode. In this mode the network
adapter is able to intercept and read all the packets in the network (recall that in non-
promiscuous mode the network adapter reads only the packets aimed to it). The
output information is copied to the Information Panel. The sniffer module retains only
those packets related to the client database communication and saves that information
in two files: one with session information (session.txt) and the other with command
data (auditory.txt). A debug file may also be created containing all the packet
information captured, before any processing is done to the data.

206 J. Fonseca, M. Vieira, and H. Madeira

Interface in Java

IIDD – Integrated Intrusion Detection in Databases

Ba
ck

 e
nd

 D
BS

ni
ffe

r i
n

C
++

Learning

Sequence of
commands

Sniffer packets
SQL

Command
Capturing

Sniffer packetsConcurrent
Detection

Session and
User’s
Actions

Transaction
profiles

Fig. 3. IIDD tool

The Learner group is used to activate the transaction learning mode. Transaction
learning includes two steps: parsing and learning. The former uses the auditory.txt file
(generated by the sniffer component) and is responsible for cleaning the commands
executed by the database users, removing variable numbers, strings, extra spaces and
normalizing the case. After that it generates the file aud.txt. Using this file and the
session.txt file the learner algorithm can now be executed. In this phase a file is
created with all the transaction profiles (profile.txt). The output information is copied
to the Information Panel. This ends the learning phase of our mechanism.

The Detector group is used to start and stop the online intrusion detector. For the
detection the network adapter is again placed in promiscuous mode in order to sniff
all the network packets. The packets are filtered to detect malicious commands
compared to the transaction profiles previously learned. It also detects deviations
from the order of execution of commands inside the transaction. Those suspicious
situations raise warnings immediately, which are saved in a debugging file
(detect_debug.txt). The output information is copied to the Information Panel.

The Action group allows the configuration of the actions to be executed when a
malicious transaction is detected or a transaction is found in a misplaced order. The
session maybe killed by sending TCP/IP resets. The connection is abruptly broken,
and the database performs a rollback of the malicious transaction in this situation. The
DBA may be warned by email, SMS or by a siren sound.

 Integrated Intrusion Detection in Databases 207

4 Tool Utilization Examples

The well-known TPC-W transactional web benchmark [19] has been used to
exemplify the tool utilization. This benchmark provides us with a controlled database
environment quite adequate for the evaluation of the learning and detection
algorithms. It simulates the activities of an e-commerce business oriented
transactional web server. A real database application is also used in the experiments,
the SCE (Serviço Central de Esterilização – Central Service of Sterilization). It is an
administrative application currently in use in the Hospitals of the University of
Coimbra (HUC: http://www.huc.min-saude.pt/) used to manage the whole process of
the sterilized material to and from all services in the HUC. This workflow comprises
the reception of the material, the selection and the sterilization of the material within a
central with steam autoclaves and ethylene oxide, various modes of drying,
packaging, sealing, request and delivery.

To obtain the latency and the coverage information we have built a SQL command
line tool that records the time stamp of the command request and the time stamp of
the server response. It is also capable of some configuration to assist the coverage
experiments. This SQL command tool obtains a list of the commands (executed by
the client application being monitored) using the text files created by the learner
module. With this list we can inject real SQL commands used by the client

Fig. 4. Interface of the Integrated Intrusion Detection in Databases application

208 J. Fonseca, M. Vieira, and H. Madeira

application into the DBMS while the intrusion detection is active. This command
injection may contain the exact command text, or a slightly altered command, injected
using a random order. It can also introduce small random changes in the command to
test the efficiency of the detection mechanism. The statistical distribution of
utilization of each command is equal to the distribution of the command when
executed by the application being monitored.

The TPC-W work-load was executed during one hour to learn the transaction
profiles (Fig. 5). As a result 8971 transactions containing 18834 commands were
executed and 32 transaction profiles were learned. As expected, the learning curve
rises abruptly in the first transactions executed and then its trend is to stabilize over
time. After the learning phase, TPC-W was executed for three hours to check if the
learning was exhaustive. No transactions were detected as intrusion, which indicates
that all transactions were correctly learned.

Fig. 5. TPC-W learning curve

As the sniffer is located in a different computer it has no impact on the server
performance, thus this mechanism has no performance overhead. Furthermore, the
mechanism does not introduce extra packets in the network, causing no negative
effect in the network bandwidth.

With our SQL command tool we manually injected 50 malicious commands while
the TPC-W was running to produce the load. They were very simple commands to be
quickly executed by the server. All these 50 commands were detected as intrusions.
The largest latency time obtained was 10 milliseconds and the average latency time
was 1.6 milliseconds. However these times may vary with the network setup and
usage. All detections were performed before the server had replied to the client, thus
before the execution of the next command.

 Integrated Intrusion Detection in Databases 209

We also performed two additional experiments with extraneous SQL commands
injection: in the first we injected the correct commands, but in a random order; and in
the second we made a change in one character randomly placed in each command.
The distribution of utilization of each command was the real distribution of the
command when the TPC-W executes it. For the first experiment 1000 transactions
were executed with a total of 2061 commands. For the second experiment 1000
transactions were also executed with a total of 2066 commands. All those transactions
were considered malicious resulting in 100% coverage.

Besides the TPC-W benchmark, we performed some experiments with a real
database application: the Central Service of Sterilization database mentioned before.
The main goal was to evaluate the learning algorithm in a real database scenario,
helping us to assess the learning transaction curve and to estimate false positives
caused by incomplete learning. We used the information of one working day of real
utilization of the database of the SCE, having 8750 commands from 609 sessions and
accesses 17 tables. This log was applied to the Learning module and 33 transaction
profiles where learned.

SCE one day

0

5

10

15

20

25

30

35

10 37
0

73
0

10
90

14
50

18
10

21
70

25
30

28
90

32
50

36
10

39
70

43
30

46
90

50
50

54
10

57
70

61
30

64
90

68
50

72
10

75
70

79
30

82
90

86
50

Commands

L
ea

rn
ed

 T
ra

n
sa

ct
io

n
s

partial log 1 partial log 2

Fig. 6. SCE transaction learning during one day

Fig. 6 shows the learning transaction curve. As we can see, most of the transactions
(24 out of 33) were learned very quickly, during the first 858 commands (partial
log 1). It is also quite evident that two new groups of database functionalities (and
corresponding transactions) were executed around the command number 4000 and
command number 6500, corresponding to the two steps in the learning curve. If we
had learned only from the partial log 1 or even the partial log 2 it would be necessary
to make a conditional detection in those periods of time, as all transactions not learned
in log 1 and log 2 would be detected as false positives. In that case, the database
administrator would have to add the new transactions to the profile collection, in

210 J. Fonseca, M. Vieira, and H. Madeira

order to avoid further detection of these transactions as false positives. In a typical
database application there are moments in time where some specific procedures are
executed (e.g., at the end of the day, at the end of the week, etc) and the time window
used to learn the profiles must contain those moments.

An important aspect is that a one day learning period is quite small when we are
considering applications that are used during many years (as is the case of SCE). In
fact, a larger period is required as some operations are executed in specific moments
in time. For the SCE, further experiments showed that a learning period of about a
week is required to learn almost all transactions.

5 Conclusions

In this paper we present a new tool for the detection of malicious transactions in
DBMS. This database intrusion detection mechanism uses a graph that represents the
profile of valid transactions to detect unauthorized transactions and consists of three
different components: SQL command capture, transaction learning and concurrent
intrusion detection. This tool is generic as it can be used in any typical DBMS,
including stat-of-the-art commercial DBMS. The setup used to exemplify the tool
utilization consists of a typical database environment using an Oracle server running
the workload from the TPC-W benchmark and a real database application. The results
show that the proposed tool is quite effective and can be easily used by the DBA.

References

1. Date, C.J., Darwen, H.: The SQL Standard, 3rd Edition, Addison-Wesley Publishing
Company, pages 414, paperbound (1993) ISBN 0-201-55822-X

2. Conry-Murray, A.: The Threat From Within (2005), http:// www.itarchitect.com/ shared/
article/showArticle.jhtml?articleId=166400792

3. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Richardson, R.: Computer Security Institute.
Computer crime and security survey (2005)

4. Schonlau, M., DuMouchel, W., Ju, W.-H., Karr, A.F., Theus, M., Vardi, Y.: Computer
intrusion: Detecting masquerades. Statistical Science 16(1), 58–74 (2001)

5. Surf, M., Shulman, A.: How safe is it out there? Zeroing in on the vulnerabilities of
application security, Imperva Application Defense Center Paper (2004)

6. Anton, A., Bertino, E., Li, N., Yu, T.: A roadmap for comprehensive online privacy
policies. In: CERIAS Technical Report, 2004-47 (2004)

7. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: Proceedings of the
28th international conference on Very Large Data Bases. Morgan-Kaufmann, San
Francisco (2002)

8. Chung, C.Y., Gertz, M., Levitt, K.: DEMIDS: A Misuse Detection System for Database
Systems. In: 3rd IFIP TC-11 WG11.5 Working Conference on Integrity and Internal
Control in Information System, pp. 159–178. Kluwer Academic Publishers, Dordrecht
(1999)

9. Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion detection in RBAC-administered
databases. In: 21st Annual Computer Security Applications Conference (2005)

 Integrated Intrusion Detection in Databases 211

10. Liu, P.: DAIS: A Real-time Data Attack Isolation System for Commercial Database
Applications. In: Proc. of the 17th Annual Comp. Security Applications Conf. (2001)

11. Hu, Y., Panda, B.: Identification of malicious transactions in database systems. The
International Database Engineering and Applications Symposium (2003)

12. Lee, S.Y., Low, W.L., Wong, P.Y.: Learning Fingerprints for a Database Intrusion
Detection System. In: 7th European Symp. on Research in Computer Security (2002)

13. Vieira, M., Madeira, H.: Detection of malicious transactions in DBMS. In: The 11th IEEE
Intl. Symposium Pacific Rim Dependable Computing, IEEE Computer Society Press, Los
Alamitos (2005)

14. Fonseca, J., Vieira, M., Madeira, H.: Tool for Integrated Intrusion Detection in Databases
(2007), available at: http://gbd.dei.uc.pt/downloads.php

15. Kimball, R. (ed.): The Data Warehouse Lifecycle Toolkit. Wiley & Sons, Inc., Chichester
(1998)

16. Santiago, V., Amaral, A., Vijaykumar, N.L., Mattiello-Francisco, M., Martins, E., Lopes,
O.: A Practical Approach for Automated Test Case Generation using Statecharts. In: 30th
Annual International Computer Software and Applications Conference, 2006, Chicago
(2006)

17. Tsai, W.T., Bai, X., Huang, B., Devaraj, G., Paul, R.: Automatic Test Case Generation for
GUI Navigation. In: The Thirteenth International Software & Internet Quality Week
(2000)

18. Oracle Corporation, Oracle® Database Concepts 10g Release 1 (10.1) (2003)
19. Transaction Processing Performance Council, TPC Benchmark W (Web Commerce)

Specification, Revision 1.8 (2002), available at: http://www.tpc.org/tpcw

Security Rationale for a Cooperative Backup

Service for Mobile Devices�

Ludovic Courtès, Marc-Olivier Killijian, and David Powell

LAAS-CNRS, Université de Toulouse, France

Abstract. Mobile devices (e.g., laptops, PDAs, cell phones) are increas-
ingly relied on but are used in contexts that put them at risk of physical
damage, loss or theft. This paper discusses security considerations that
arise in the design of a cooperative backup service for mobile devices. Par-
ticipating devices leverage encounters with other devices to temporarily
replicate critical data. Anyone is free to participate in the cooperative
service, without requiring any prior trust relationship with other partic-
ipants. In this paper, we identify security threats relevant in this context
as well as possible solutions and discuss how they map to low-level secu-
rity requirements related to identity and trust establishment. We propose
self-organized, policy-neutral mechanisms that allow the secure designa-
tion and identification of participating devices. We show that they can
serve as a building block for a wide range of cooperation policies that
address most of the security threats we are concerned with. We conclude
on future directions.

1 Introduction

Mobile devices (e.g., laptops, PDAs, cell phones) are increasingly relied on but
are used in contexts that put them at risk of physical damage, loss or theft.
However, fault-tolerance mechanisms available for these devices often suffer from
shortcomings. For instance, replicating data to a storage device (e.g., USB stick
or disk drive) carried along with the mobile device is risky: that device could
easily be lost or stolen, or it could be damaged precisely when the mobile de-
vice itself is damaged. Data “synchronization” mechanisms, which allow one to
replicate a mobile device’s data on a desktop machine, are an improvement but
they usually require that the desktop machine be either physically accessible
or reachable via the Internet. Use of third-party backup servers typically also
requires access to some network infrastructure.

Unfortunately, in many scenarios where devices are carried along in differ-
ent places, access to a network infrastructure (e.g., via a Wi-Fi access point)
is at best intermittent. Often, access to a network infrastructure may be too
costly and/or inefficient energy-wise and performance-wise to be considered vi-
able “just” for backup. In emergency situations and upon disaster recovery, for
� This work was partially supported by the MoSAIC project (ACI S&I, French national

program for Security and Informatics; see http://www.laas.fr/mosaic/), the Hidenets
project (EU-IST-FP6-26979), and the ReSIST network (EU-IST-FP6-26764).

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 212–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.laas.fr/mosaic/

Security Rationale for a Cooperative Backup Service for Mobile Devices 213

instance, infrastructure may well be unavailable for an unspecified amount of
time. In such cases, data produced on a mobile device while the network is
unreachable cannot be replicated using the aforementioned synchronization tech-
niques and could be lost. Similarly, environments with scarce Internet connec-
tivity, such as those targeted by the “One Laptop per Child” project (OLPC,
http://laptop.org/), can hardly rely on access to an infrastructure for doing data
backup.

We aim to address these issues by providing a cooperative backup service,
called MoSAIC [12,27]. The idea borrows from peer-to-peer cooperative services.
The goal of this service is to improve data dependability for mobile devices. It
leverages excess storage resources through spontaneous resource sharing among
neighboring devices, using short-range wireless communications.

Anyone is free to participate in the service and, therefore, the majority of par-
ticipants have no prior trust relationship. However, there are also scenarios where
owners of a few cooperating devices are personal acquaintances with full trust rela-
tionships as far as the backup service is concerned (e.g., colleagues, friends, etc.).
In general, an open cooperative service must be able both to account for lack of
prior trust relationships among participants and to take advantage of prior trust
relationships among device owners when they exist. In addition, services designed
for mobile devices and ad hoc networks need to meet requirements related to re-
source constraints (energy, CPU power, network bandwidth) and intermittent or
complete lack of access to a fixed network infrastructure. These constraints impose
several requirements on the storage layer of our cooperative backup service [12].

In this paper, we focus on security aspects of the cooperative backup service
related to secure cooperation and secure interactions between peers. We discuss
their integration with the security techniques implemented at the storage layer.
We propose self-organized security mechanisms that may be used to support
behavior accountability and a wide range of cooperation policies. We show how
cooperation policies can take advantage of these mechanisms to address some of
our security concerns. Our approach differs from earlier work in that it focuses
on policy-neutral security primitives that do not restrict the user’s choice of a
policy, rather than focusing on a specific policy.

Section 2 provides an overview of our cooperative backup service. Section 3
presents the security concerns we want to address. Section 4 provides an overview
of the storage layer of our cooperative backup service. Section 5 proposes core se-
curity mechanisms and shows (i) how they fulfill some of our requirements and (ii)
how they can be used as a building block for various cooperation policies. Section 6
deals with implementation considerations. Section 7 summarizes related work. Fi-
nally, Section 8 concludes and depicts on-going and future research work.

2 MoSAIC Overview

Our cooperative backup service, which we call MoSAIC, can leverage (i) ex-
cess storage resources available on mobile devices and (ii) short-range, high-
bandwidth, and relatively energy-efficient wireless communications (Bluetooth,

http://laptop.org/

214 L. Courtès, M.-O. Killijian, and D. Powell

ZigBee, or Wi-Fi). More importantly, we expect our cooperative backup service
to improve long-term availability of data produced by mobile devices. The idea
is borrowed from peer-to-peer cooperative services: participating devices offer
storage resources and doing so allows them to benefit from the resources pro-
vided by other devices in order to replicate their data [27]. Participating devices
discover other devices in their vicinity using a suitable service discovery mech-
anism such as [39] and communicate through single-hop connections, thereby
limiting interactions to small physical regions.

Anyone is free to participate in the service and, therefore, participants have
no prior trust relationship. In the sequel, we use the term contributor when
referring to a node acting as a storage provider; we use the term data owner
when referring to a “client” device, i.e., one that uses storage provided by the
contributors to replicate its data. All participating devices may play both the
owner and the contributor role.

When out of reach of Internet access and network infrastructure, devices meet
and spontaneously form ad hoc networks which they can use to back-up data.
However, it would be unrealistic to rely on chance encounters between devices for
recovery. Instead, we require contributing devices to eventually send data stored
on behalf of other devices to an agreed-upon Internet-based store accessible
by the data owners [12,27]. Once this has been done, the duty of contributing
devices has been fulfilled and they can remove the data from their local store.
Eventually, data owners may restore their data by querying the Internet-based
store. In practice, the implementation of this Internet repository is an orthogonal
issue: it could be implemented in a number of different ways ranging from a
simple centralized server to a peer-to-peer distributed store.

This way of handling intermittent infrastructure connectivity makes our ap-
proach comparable to delay-tolerant networks (DTNs): data blocks that are
transmitted by data owners to contributors can be viewed as packets sent to
the Internet-based store and where contributors act as relays [42].

MoSAIC’s approach to cooperative backup also bears some similarity with
earlier work on cooperative data storage [3,26] and caching for mobile devices
[22,41]. However, it differs from them in several ways. First, unlike typical dis-
tributed file system access patterns, data that is backed up is produced by a
single device and may usually not be accessed by other devices. Second, unlike
most caching strategies, our approach does not seek to improve locality of data
replicas: instead we expect replicas to propagate to the Internet-based store,
much like packets in a DTN.

Previous work studied the design of a storage layer for our cooperative backup
service and compared the CPU/storage tradeoff of various data encoding schemes
[12]. This study led to the storage-layer design outlined in Section 4. We also
analytically evaluated the dependability of data carried on a mobile devices
participating in the cooperative backup service using generalized stochastic Petri
nets (GSPNs) and Markov chains [11]. This paper focuses on primitives enabling
cooperation among distrustful participating devices.

Security Rationale for a Cooperative Backup Service for Mobile Devices 215

3 Security Context and Motivations

This section details security issues that arise in a cooperative backup service
among distrustful devices and concludes on security goals.

3.1 Threats to Confidentiality and Privacy

There is an obvious threat to confidentiality when it comes to storing critical
data on untrusted devices: A malicious storage contributor may try to access
data stored on behalf of other devices. Therefore, confidentiality has to be pro-
vided at the storage layer and is achieved through regular encryption techniques,
as will be discussed in Section 4. Thus, communication eavesdropping is not a
serious additional threat to confidentiality. Since data blocks exchanged between
two participating devices are encrypted, an eavesdropper cannot gain any more
information about the contents of the data being backed up than the contributor
itself. Likewise, data blocks must be named by the data owner in a way that is
meaningless to contributors [12] so, again, disclosing such names to a potential
eavesdropper does not present an additional threat. Since the storage layer pro-
vides end-to-end encryption, the communication layer does not need to provide
any additional encryption. This is a fortunate consequence since it allows CPU
and energy savings to be made.

However, privacy of the participating users can be threatened. An eavesdrop-
per may be able to know whether a device is actively replicating data, and it
may be able to estimate the amount of data being replicated. It may also be
able to know the parties involved (the physical devices or even their owner),
especially when in their physical vicinity. Recent attempts to provide anonymity
in MANETs, for instance based on anonymous multi-hop routing [38], appear
to be relatively bandwidth-consuming and energy-inefficient. Thus, we do not
address threats to privacy in this paper. However, we hope to provide a mini-
mum level of identity privacy by allowing users to use self-managed identifying
material (which may not establish any binding with their real-world identity, i.e.,
pseudonyms), rather than compelling the use of identifying material provided by
a central authority.

3.2 Threats to Integrity and Authenticity

There are also evident threats to data integrity and authenticity: A malicious
contributor could tamper with data stored on behalf of other nodes, or it could
inject garbage data that would pass all the integrity checks performed by data
owners but would not be of any use to the data owner.

Integrity threats also arise at the communication layer: an intruder may try
to tamper with messages exchanged between two devices (essentially storage re-
quests), thereby damaging the data being backed up. Thus, the communication
layer must also guarantee the integrity of messages exchanged between partici-
pating devices.

216 L. Courtès, M.-O. Killijian, and D. Powell

3.3 Threats to Availability

Unavailability threats against the cooperative backup service fall into two cat-
egories: unavailability resulting from accidental data loss (including accidental
failure of contributors holding replicas), and data or service unavailability re-
sulting from denial of service (DoS) attacks committed by malicious nodes.

Obviously, data unavailability due to accidental failures of either the owner or
contributor devices is the primary concern when building a cooperative backup
service.

Malicious participating devices may also try to harm individual users or the
service as a whole, denying use of the service by other devices. A straightforward
DoS attack is data retention: a contributor either refuses to send data items
back to their owner when requested or simply claims to store them without
actually doing so. DoS attacks targeting the system as a whole include flooding
(i.e., purposefully exhausting storage resources) and selfishness (i.e., using the
service while refusing to contribute). These are well-known attacks in Internet-
based peer-to-peer backup and file sharing systems [2,13,29] and are also partly
addressed in the framework of ad hoc routing in mobile networks [5,33]. These
threats can be seen as threats to cooperation.

3.4 Discussion

Security threats related to the data being backed up, in particular threats to data
availability, confidentiality, and integrity are largely addressed by the storage
layer of our cooperative backup service. Section 4 provides an overview of the
storage layer and how it addresses these issues.

Service availability is also at risk in the presence of intruders and non-coopera-
tive participants. The very possibility of allowing malicious devices to participate
in the cooperative service threatens cooperation among participants as a whole.
We believe that cooperation can only be leveraged if the cooperative service sup-
ports accountability. In our view, accountability is a building block upon which
users can implement their own higher-level cooperation policies defining the set
of rules that dictate how they will cooperate. Section 5 proposes core mechanism
as a means to provide accountability and discusses cooperation policies that may
be implemented on top of it.

4 Architectural Overview of the Storage Layer

The storage layer presented in [12] addresses the efficient storage and index-
ing of data owners’ critical data. It follows a write-once read-many (WORM) or
append-only storage model similar to that found in archival storage systems [37],
where new versions of files are appended rather than substituted to previously-
stored versions. It produces a number of data blocks, each of which is bound to
a name which is used to store/retrieve it to/from contributors. Since partici-
pating nodes are mutually suspicious, the storage layer provides guarantees for
data confidentiality, integrity and authenticity: it supports data and meta-data

Security Rationale for a Cooperative Backup Service for Mobile Devices 217

encryption as well as integrity and authenticity checks, using an appropriate
encoding. The general framework can be summarized as follows:

1. The data owner (rather: the cooperative backup software on the owner-side)
chops the data items to be backed up into small blocks and assigns them
a block name. A block name can be, for instance, a cryptographic hash of
the block content, thereby providing content-addressable storage1 [37]. An
important requirement is that (i) the naming scheme must be meaningless to
contributors and (ii) blocks must be encrypted. In other words, contributors
cannot make any assumptions on the block naming scheme used by data
owners.

2. The data owner produces meta-data blocks describing, among other things,
how data blocks are to be re-assembled to produce the original data. Those
meta-data blocks are themselves named in a similar way. Authenticity is
achieved by signing just part of the meta-data. For instance, if meta-data
blocks are the intermediate nodes of a Merkle tree whose leaves are data
blocks [32], then only the root block needs to be signed, which reduces re-
liance on CPU-intensive cryptography; verifying the root block’s signature
actually allows the authenticity of the whole tree to be checked.

3. When a contributing device is encountered, the data owner sends it some
of its data and meta-data blocks using remote procedure calls (RPCs). This
is realized through the invocation put (name, content) which sends data
content to the contributor and asks it to bind it to name. Since owners can
choose any block naming scheme, contributors must arrange to provide per-
owner block name spaces in order to avoid collisions among blocks belonging
to different owners. Obviously, in order to increase data availability, data
owners may choose to replicate each block [11].

The end result of this backup process is an opaque identifier that names an
(encrypted) root meta-data block. We refer to this identifier as the root block
name.

The root block name is critical since it allows all the user’s data to be re-
covered, so it also needs to be backed up. However, as new versions of the data
items (e.g., a single file or a whole file system hierarchy) are backed up, new
data and meta-data blocks are created, each having a new name, and thus a
new root block name is produced (this issue is not uncommon in the context of
peer-to-peer file sharing and archival systems [2,37]). Consequently, data owners
should store their latest root block name on contributors under a fixed block
name to allow restoration to be bootstrapped conveniently. Since it is a critical
piece of information, data owners may choose to encrypt it.

When a contributor gains Internet access (rather, when it gets sufficiently
cheap or high-bandwidth Internet access), it transfers data blocks stored on be-
half of other devices to an Internet-based storage server that data owners can

1 Use of content-addressable storage allows identical data blocks to be identified.
Therefore, it permits the implementation of incremental backup, where only new
blocks are transferred to contributors.

218 L. Courtès, M.-O. Killijian, and D. Powell

eventually access to restore their data. That Internet store could be implemented
in many different ways, ranging from a peer-to-peer distributed store to some-
thing as simple as an FTP server. However, it should support the put mechanism
or a slightly enhanced version thereof so that both name-block bindings and per-
owner block name spaces are preserved.

Restoration of backed up data typically occurs when the data owner device
has failed or been lost. In this case, data owners first retrieve the root meta-data
block (from the Internet-based store), decrypt it and decode it (which can only
be done by its legitimate data owner), and then recursively fetch the blocks it
refers to. Fetching blocks upon restoration is achieved through a get (name)
RPC that returns the contents of the block designated by name.

Of paramount importance is the inability for arbitrary users to tamper with
a data owner’s name space on the Internet-based store. For instance, it must be
impossible for a malicious user to overwrite a data owner’s block associated with
a specific name on the Internet repository without this being detected. However,
since block encoding is owner-specific, the Internet-based store cannot check the
authenticity of incoming data blocks without knowing the exact encoding scheme
used by their owner. This can be solved by having the Internet-based store keep
a list of all incoming data blocks associated with a given name, should different
blocks be put under the same name (collisions). Upon recovery, the data owner
can then detect and eliminate invalid data blocks in cases of collisions; invalid
data blocks may be readily detected by the data owner using the possibilities
offered by its encoding scheme, such as digital signature or hash verification.

It is worth noting that among the mechanisms presented here, only the actual
storage protocol (i.e., the put RPCs) is enforced. This leaves users with the
ability to choose any security policy for their data: they may choose any data
availability, confidentiality and integrity mechanism while still conforming to the
storage protocol.

5 Leveraging Cooperation

In this section, we present our approach to the design of mechanisms that ad-
dress the threats to cooperation identified in Section 3. Core mechanisms are
proposed to support accountability while being neutral with respect to cooper-
ation policies. We then discuss issues that arise from the self-organized nature
of our approach as well as cooperation policies.

5.1 Design Approach

There are essentially two ways to provide security measures against the DoS
threats listed earlier in MANETs and loosely connected peer-to-peer backup
systems: via a single-authority domain, where a single authority provides certifi-
cates or other security material to participants and/or dictates them a particular
policy or mechanism, or through self-organization, where no single authority is
relied on, at any point in time [9].

Security Rationale for a Cooperative Backup Service for Mobile Devices 219

In our opinion, reliance on a common authority responsible for applying ex-
ternal sanctions to misbehaving participants as in BAR-B [1] falls into the first
category. For example, BAR-B contributors must provide a proof that they do
not have sufficient space when rejecting a storage request; similarly, upon audit-
ing, participants must show the list of all blocks stored on their behalf elsewhere
and all blocks they store on behalf of other nodes. Failing to do so constitutes
a “proof of misbehavior” that may lead to sanctions. This raises fundamental
security issues: why would one disclose all this information to some untrusted
entity? Does it still qualify as cooperation among multiple administrative do-
mains when a single set of rules is enforced through external sanctions? While
this approach achieves strong service provision guarantees, it does so at the cost
of being authoritarian and seems unsuitable for the kind of open cooperation
network we envision.

Likewise, the use of so-called “tamper-resistant security modules” as in [6]
can be considered a single-authority domain approach: security modules act as
a local representative of an “authority” and enforce part of the protocol (in [6],
the nuglet mechanism) in order to provide protection against malicious users.
This leaves the user with no choice but to abide by the rules set forth by the
security module and the party that issued it.

In this paper, we only focus on self-organized approaches. First, they are a
good match for mobile ad hoc networks which are self-organized. Second, since
we are designing an open cooperative service where anyone can participate, self-
organization is likely to make the service more readily accessible to everyone;
conversely, requiring every user to register with some central authority would be
an undesirable burden likely to limit user adoption. Finally, we advocate that
reliance on a central authority can in itself be considered as a security threat, to
some extent: that authority is in effect a single point of trust and its compromise
would bring the whole service down. Furthermore, depending on their security
policy, users may not be willing to fully trust such an authority just because they
have been told it’s a “trusted” authority. They may also want to have full control
over the actions that can be taken by their device, rather than handing over some
authority over the device to some possibly unknown third party. Therefore, we
prefer to focus on self-organized solutions and do not consider solutions based
on a single-authority domain.

As a consequence, we cannot assume that any single cooperation policy is go-
ing to be used by all devices: each device can, and will, implement its own policy.
We believe that the ability to choose a security and cooperation policy is par-
ticularly important when using our cooperative backup service for two reasons.
First, the goal of this service is to improve the availability of users’ critical data.
As such, users are likely to be willing to pay attention to the contributors they
deal with, and hence, they may be concerned with their cooperation policy. Sec-
ond, mobile devices being resource-constrained, users are likely to require tight
control over their resource usage, and may want to implement a cooperation
policy that makes the best use of their resources. This is quite different from,
for instance, Internet-based file sharing services where participating devices are

220 L. Courtès, M.-O. Killijian, and D. Powell

typically desktop machines and where, as a result, it is safe to assume that most
users will be satisfied with the same default cooperation policy.

Therefore, in this paper we focus on core mechanisms allowing for account-
ability rather than on actual cooperation policies.

5.2 Providing Secure and Self-Managed Device Designation

Devices must be able to name each other (i) to achieve accountability and (ii)
to allow contributors to implement per-owner block name spaces, as discussed
in Section 4.

To these ends, device names must satisfy the following requirements. First,
since we want to build a self-organized service, where no central authority has
to be consulted, it must be possible for every device to create its own name or
designator. Second, for the naming scheme to be reliable, device names must be
unique and context-free (i.e., their interpretation should be the same in any con-
text). Third, since device names serve as the basis of critical operations, it must
be possible to authenticate a name-device binding (i.e., assess the legitimacy or
“ownership” of a name). Authentication is needed to preclude unauthorized use
of a name, as in spoofing attacks. Unauthorized uses of device names would effec-
tively hinder the implementation of per-owner block name spaces and accounting
mechanisms.

These requirements rule out a number of widespread designation mechanisms.
IP addresses, for instance, would obviously be unsuitable to name devices since
they have none of these properties (they are not context-free, especially IPv4
link-local addresses, not unique, except for IPv6 addresses, and cannot be au-
thenticated). The designers of Mobile IPv6 (MIPv6) had similar requirements
and had made the same observations. This led them to devise “statistically
unique and cryptographically verifiable” (SUCV) addresses [36].

The building block for the naming scheme we are interested in (and that of
MIPv6 SUCV addresses) is asymmetric cryptography. Public keys have all the
desired properties as designators: they are (statistically) unique and context-free,
and they provide secure naming (i.e., the name-device binding can be authen-
ticated, thereby precluding spoofing). In practice, public keys can be too large
to be used directly as designators, which is why several protocols use crypto-
graphic hashes or fingerprints of the public keys as designators [7,36]. In order
to achieve accountability, both contributors and data owners may wish to iden-
tify the device they are talking to, that is, to authenticate the binding between
alleged name of the peer device and the device itself. In other words, mutual
authentication is required.

It is worth noting that the entities we want to name are instances of the
cooperative backup software running on participating devices and not people
owning the devices, nor even physical devices. Thus, the principals involved
in the cooperative backup service are logical entities that exist and interact
solely through electronic interactions among them. Therefore, authenticating
the binding between one of these entities and its name (public key) boils down
to verifying that that entity holds the private key corresponding to its name [19].

Security Rationale for a Cooperative Backup Service for Mobile Devices 221

Doing so is simple and does not require the use of any certification authority
whatsoever.

As far as the data restoration bootstrap is concerned, a practical consequence
of using public key pairs to identify devices is that a user’s key pair is all that is
needed to bootstrap restoration, assuming its public key is also used to encrypt
the root block name. That means that users must store their key pairs reliably,
outside of the cooperative backup service, by copying them on a storage device
under their control (USB stick, computer, or even a simple piece of paper stored
in a safe place). Obviously, the device where the user’s key pair is stored must
not be carried along with the mobile device itself, since it could easily be lost,
stolen, or damaged along with the mobile device, making it impossible to recover
the data. Elliptic curve cryptography (ECC) would be handy for that purpose:
it yields keys much smaller than, e.g., “security-equivalent” RSA keys; thus an
ECC key pair can be as simple as a pass phrase that may be readily memorized
by the user.

5.3 Ensuring Communications Integrity

Once a participating device has authenticated the binding between a peer device
and a name, a malicious device may try to send messages and pretend they orig-
inate from another device, thereby using resources on behalf of another device.
To address this issue, the integrity and authenticity of messages (i.e., RPC invo-
cations) devices exchange must be guaranteed by the communication layer. In
particular, once devices have mutually authenticated, using their key pairs, the
communication protocol must guarantee that messages received at either end
of the communication channel still come from the previously authenticated de-
vice. Many well-known cryptographic protocols address this issue, with different
security properties.

We believe that non-repudiation is not required in our decentralized, self-
managed, cooperative backup system. Non-repudiation could be used, for in-
stance, to make sure that a device cannot deny that it sent a series of storage
requests to a certain contributor. That contributor could then prove to a third
party that it did receive those requests. However, such proofs would likely not
be sufficient to be used, for instance, as part of the “history records” main-
tained by a reputation system (described below): they would concern only indi-
vidual requests and would consequently fail to provide a sufficiently high-level
view of a device’s past cooperation. For instance, to prove that a data owner re-
quested 1 GiB of storage, a contributor would need to provide a third party with
1 GiB worth of put requests along with the corresponding signatures. Doing so
would provide more information that is necessary and would be very bandwidth-
consuming, making it impractical. Thus, non-repudiation of individual messages
is inappropriate in our context.

Therefore, we plan to use regular message authentication codes (such as
HMACs) to provide support for message authenticity checks. HMACs can only
be verified by the receiver, and therefore do not provide non-repudiation.

222 L. Courtès, M.-O. Killijian, and D. Powell

5.4 Thwarting Sybil Attacks

Since key pairs are to be generated in a self-organized way, our system is sub-
ject to the Sybil attack [16,30]: devices can change names (i.e., public keys) any
time they want, which allows them to escape accountability for their past ac-
tions, including misbehavior. This attack defeats the implementation of a proper
resource accounting mechanism, and consequently that of resource usage poli-
cies. For instance, a data owner can completely circumvent a per-device quota
implemented by a contributor by just switching to a new key pair.

The verifiable designation mechanism proposed above cannot by itself prevent
Sybil attacks. Instead it is up to cooperation policies to make Sybil attacks less
attractive by providing incentives for users to keep using the same name (i.e., the
same key pair). In a system where names are managed in a self-organized way,
no cooperation policy can prevent Sybil attacks: They can only make them less
effective, but evidence shows that well-designed policies can make them pretty
much worthless [4,30,33].

Naturally, most reasonable cooperation policies have a common denominator:
they tend to be reluctant to provide resources to strangers while being more
helpful to devices that have already cooperated. However, in order to bootstrap
cooperation, many policies may grant at least a small amount of resources to
strangers [23]. This means that there is usually (i) a medium- to long-term advan-
tage in keeping the same name and (ii) a short-term advantage in cooperating
under a new name. Section 5.5 will show how actual cooperation policies can
achieve this.

Fortunately, the impact of Sybil attacks is largely a matter of scale. With
Internet-based peer-to-peer cooperative services, any peer can reach thousands
of peers in a glimpse. Thus, even if it can only benefit from a small amount
of resources from each peer, it may be able to quickly gain a large amount of
resources. Conversely, in a cooperative service relying on physical encounters
among mobile devices, it may take a long time and a great deal of traveling
around before one is able to gain access to a useful amount of resources, which
effectively makes selfishness less viable economically. Likewise, the impact of a
flooding attack is necessarily limited to physical regions and/or groups of devices.

5.5 Allowing for a Wide Range of Cooperation Policies

User cooperation policies define the set of rules that determine how their device
will cooperate. They are usually concerned with the stimulation of cooperation
and the establishment of trust with other devices. To that end, cooperation
policies can build on the accountability provided by the mechanisms presented
above. We can imagine two major classes of cooperation policies: those based on
the underlying social network, and those based on past behavioral observations,
either private observation or shared reputation [4,23,28,33]. It is our goal to allow
users to choose among these cooperation policies.

Security Rationale for a Cooperative Backup Service for Mobile Devices 223

Cooperation policies based on the relationships already existing in the under-
lying social network can be as simple as “white lists”, where the user only grants
resources to devices belonging to personal acquaintances. There can also be more
sophisticated policies: a user could also accept storage requests from “friends of
friends”, and it could accept to dedicate a small amount of resources to strangers
as well. It can be argued that such policies do not scale since (i) the number
of personal acquaintances of an individual is limited, and (ii) when travelling a
lot, these acquaintances may be out of reach. On the other hand, social studies
have provided evidence of a “small-world phenomenon” in human relationships
[8,34] and algorithms have been proposed to discover chains of acquaintances
among arbitrary users [9]. These studies can make cooperation policies based
on a social network more relevant. Such policies, were they to insist on being
able to verify bindings of keys to real-world identities, would trade privacy for
improved resilience to Sybil attacks. However, similar policies may be used with
pseudonyms instead of real-world identities.

Cooperation policies based on observations of past device behavior provide
an interesting alternative: devices maintain “history records” of each other and
make cooperation decisions using them as an input. History records can either
be local to a device or they can be shared among devices—the latter is usu-
ally referred to as a reputation system [4,28,33]. In a reputation system, devices
exchange history records and may use them as an additional hint to their cooper-
ation decisions. Simulations have shown that shared history records are usually
more efficient than private history records, especially in large networks or in the
presence of a high device turnover [4,28]. However, many works that evaluate
the outcome of such reputation mechanisms assume that all participating nodes
use the same cooperation policy [4,33] (e.g., the same node rating algorithm, the
same decision-making algorithm, etc.). There is no reason for this to be true.
The result of using a reputation mechanism in a world where different policies
are in use is, to our knowledge, an open issue. Nevertheless, reputation mech-
anisms do make Sybil attacks less attractive since few resources can be gained
by a stranger. Devising a protocol that would allow trust information to be ex-
changed among principals potentially using different cooperation strategies is an
open issue.

From a privacy viewpoint, maintaining such history records may be a concern
when identities are bound to real-world entities, since it would allow one to know
where a given person was at a given point in time. However, for users’ privacy
to be seriously threatened, attackers would need to physically track them, which
the cooperative backup service could hardly be held accountable for. This is a
lesser concern when identities are not bound to real-world entities.

6 Implementation Considerations

This section discusses implementation concerns and in particular the choice of
actual protocols to achieve the goals outlined earlier.

224 L. Courtès, M.-O. Killijian, and D. Powell

6.1 Protocol Choice

While Mobile IPv6 [36] provides some of the features we need, we considered
it impractical since its mechanisms are implemented at the network layer, and
implementations are not widely available at this time.

Our implementation of the block store (essentially the put and get requests
mentioned earlier) is based on Sun/ONC RPC [40]. ONC RPC defines the
so-called “DES authentication mechanism”, designed for authentication over a
wide-area network; however, the mechanism does not address all our concerns
(for example, its naming scheme for peers does not fulfill all the requirements
of Section 5.2, and in particular does not allow name-device bindings to be re-
liably authenticated). The authentication mechanisms for ONC RPC defined in
RFC 2695 [10] have similar shortcomings with respect to our goals. The RPCSec
bindings for the Generic Security Services Application Programming Interface
(GSS-API) [17] were not considered appropriate either (one reason is that most
available GSS-API implementations only support Kerberos-based mechanisms,
which assumes the availability of such an infrastructure).

Consequently, we decided to use the well-known Transport Layer Security
(TLS), a protocol currently widely deployed on the Internet [15]. Although it
was not designed with mobile computing and constrained devices in mind, we
believe its flexibility makes it a suitable choice. In particular, TLS offers a wide
range of cipher suites, which allows us to choose cipher suites that meet our re-
source saving constraints, such as cipher suites with no payload data encryption,
as discussed in Section 3.1. TLS provides message authentication guarantees us-
ing HMACs, where, again, the HMAC algorithm to be used is negotiated between
peers. TLS provides payload compression but this may be disabled (also subject
to negotiation between peers). Again, disabling it allows us to save energy, espe-
cially since the data that is to be exchanged among peers is already compressed.

As far as mutual authentication is concerned, TLS provides it through
certificate-based authentication mechanisms. While the main document [15] refers
primarily to X.509 certificates, a proposal has been made to extend TLS to
support authentication using OpenPGP certificates [31]. This extension is very
relevant in our context for a number of reasons. First, OpenPGP certificates
can be readily generated using widely available tools (e.g., GnuPG) and they
are already familiar to many computer users. Second, OpenPGP certificates are
already used in the context of secure electronic communications among indi-
viduals. Therefore, the use of OpenPGP certificates also allows users to easily
implement cooperation policies based on the underlying social network, as out-
lined in Section 5.5.

OpenPGP certificates contain a lot more than just a public key. In particular,
since they are primarily used to certify a binding between a public key and a real-
world person name, they contain information such as the real-world name and
email address of the person the public key (allegedly) belongs to (the “user ID
packets”), and a list of third-party signatures (certifications) indicating the level
of trust put by other people in this name-key binding [7]. This information is
only useful when implementing cooperation policies based on the social network.

Security Rationale for a Cooperative Backup Service for Mobile Devices 225

6.2 Prototype Implementation

We have been working on a prototype implementation of our cooperative backup
protocol that uses ONC RPC on top of TLS. Since ONC RPC implementa-
tions do not natively support the use of TLS as the underlying protocol, we did
our own implementation. This proved to be easy to do, using raw TCP RPC
client/server code as a starting point. We use GnuTLS [25] as the underlying
TLS implementation since it is the only major implementation supporting the
OpenPGP extension [31] as of this writing. GnuTLS is very flexible and has
allowed us to actually make various specific trade-offs, such as disabling com-
pression, choosing an encryption-less cipher suite, etc.

Initial measurements show that TLS induces little communication overhead.
Handshake itself demands 2 KiB per connection in both directions (when using
certificates with no signature packets), most of which stems from the OpenPGP
certificate exchange. TLS’ record layer incurs little overhead (e.g., less than
30 octets per message with SHA-1-based HMACs), provided messages are at
most 16 KiB large—otherwise messages are fragmented, which incurs additional
overhead [15]. Although further measurements are needed, these results seem
reasonable in our context.

6.3 On-Going and Future Work

We are currently in the process of evaluating the overhead, in terms of network
bandwidth and CPU cost, induced by the use of TLS. We have also started
implementing a set of cooperation policies, ranging from simplistic policies such
as “white lists”, to more sophisticated policies that make use of local information
of past interactions with other devices. The next step will be the implementation
of a reputation system where participating devices can exchange and make use
of cooperation certificates.

All these cooperation policies will need to be evaluated and compared, notably
in terms of the overall level of cooperation yielded, and in terms of the resilience
of the cooperative service to the aforementioned DoS attacks. Different reference
scenarios will need to be identified to that end. It is still unclear which method
we will choose to achieve this goal. Simulation looks appealing but may be hard
to set up to faithfully reflect our system model. On the other hand, we may
also try to build on the analytical evaluation of replication strategies that we
conducted earlier [11]. Specifically, this evaluation uses a model of interactions
among participating devices using Petri nets and Markov chains that could be
extended to reflect various cooperation strategies.

7 Related Work

A lot of work has gone into thwarting availability threats due to DoS attacks
similar to those described in Section 3.3. Most of this work was done in the area
of peer-to-peer storage and cooperative backup. While our cooperative backup

226 L. Courtès, M.-O. Killijian, and D. Powell

scheme with intermittent connectivity to the infrastructure is similar to delay-
tolerant networks [42], the security of such networks is still largely an open issue
[21,24]. This is partly due to the fact that most applications of DTNs, such as
space mission networks, are not expected to be open for anyone to participate,
which reduces the incentive to address these issues.

Fall et al. did propose security mechanisms permitting DTN routers to detect
and eliminate disallowed traffic, and thereby avoid DoS attacks such as flooding
against the DTN [20]. However, the proposed solution relies on centralized iden-
tity management and authorization: all participants are issued a key pair by an
authority, along with a “postage stamp” signed by that authority indicating the
allowed “class of service” for that user. Such an approach only addresses specific
DoS attacks. Forms of non-cooperation such as refusal to forward a message are
not tackled. We also believe that such an approach does not scale and suffers
from shortcomings inherent to single-authority domain approaches, as discussed
in Section 5.

In general, “trust begets cooperation”. In the case of our cooperative backup
service, data owners need to trust contributors to provide them the service, while
contributors need to trust data owners not to abuse the service (e.g., by flooding
it or by being selfish). While both issues have to do with trust establishment
between owners and contributors, the literature tends to refer to both aspects
using different names, such as cooperation incentives and trust establishment.

To evaluate the cooperativeness of a peer, one needs to be able to observe
both its service usage and its service provision. When the cooperative service is
packet forwarding or routing in MANETs, device cooperation can be evaluated
almost instantaneously [4,23,33]. However, in cooperative backup services, ser-
vice usage and service provision call for different evaluation techniques. First,
service usage can be balanced using simple strategies such as symmetric trades
[29] (i.e., pairwise “tit-for-tat” exchanges), or “storage claims” that may be ex-
changed among peers [14]. Both approaches assume high connectivity among
peers and are therefore unsuitable to MANETs. Second, periodic auditing has
been proposed to establish trust in contributor service provision [1,13,14,29], but
it requires peers to be reachable so that they can be challenged, which is unsuit-
able to the MANET context. In our cooperative backup service for MANETs,
service provision can only realistically be evaluated when gaining Internet access
or upon restoration.

Once service provision and usage can be evaluated, self-organized solutions
usually make use of “history records” of peer behavior as an aid to cooperation
decisions, as mentioned in Section 5.5. Simulations have been made to evaluate
the impact on cooperation of such mechanisms when used by all participants,
in the context of both private and shared history records [4,28]. In MANETs,
reputation mechanisms have been proposed primarily in the context of packet
forwarding for multi-hop routing protocols and route discovery [4,33].

Designation issues in a decentralized environment have been studied notably
in the context of distributed programming and capability systems [35] as well
as in the context of public key infrastructures (PKIs) [18,19]. The provision of

Security Rationale for a Cooperative Backup Service for Mobile Devices 227

guarantees for “address ownership” (i.e., having address-device bindings that can
be authenticated) has also been a concern in the design of Mobile IPv6 (MIPv6)
[36]. This led the authors to opt for “statistically unique and cryptographically
verifiable (SUCV) identifiers”. This is similar to one of the mechanisms we pro-
pose in this paper, except that we operate at the application level rather than
at the network layer, which provides us with more flexibility.

Douceur et al. described the Sybil attack as a problem that is inherent to dis-
tributed systems using self-managed designators [16]. In [30] the authors showed
that a reputation system can efficiently leverage cooperation even when self-
managed designators are used.

8 Conclusion

We introduced a cooperative backup service for mobile devices that builds on the
peer-to-peer, self-organizing paradigm largely used on the Internet. We identified
security threats on such a service and listed subsequent security requirements.
We have shown how a reduced set of well-known cryptographic primitives can
be used to meet those requirements in a self-organized way. Our approach differs
from earlier work in that it focuses on policy-neutral security mechanisms, rather
than on a specific cooperation policy.

In particular, we advocated the use of public keys as self-managed, secure and
unique designators for participating devices and discussed their use as a policy-
neutral building block for a variety of cooperation policies, including a reputation
system. Systems using self-managed designators are subject to the Sybil attack;
therefore, we discussed the impact of this attack in our context and showed how
cooperation policies can be implemented that reduce the harm that can be done.
Finally, we discussed implementation issues and outlined the foundations of an
implementation that uses TLS with OpenPGP certificate-based authentication.

The work presented in this paper is part of a larger design and implementation
effort of a cooperative backup service for mobile devices. Our earlier work ex-
plored other aspects of the design space, particularly relating to storage tradeoffs
and data encoding and compression techniques [12], as well as the evaluation of
replication strategies [11]. Future work includes a detailed evaluation of some of
the techniques discussed in this paper, as well as the deployment of a prototype
cooperative backup service in real-world conditions.

References

1. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: BAR
Fault Tolerance for Cooperative Services. In: Proceedings of the ACM Symposium
on Operating Systems Principles, pp. 45–58. ACM Press, New York (2005)

2. Bennett, K., Grothoff, C., Horozov, T., Patrascu, I.: Efficient Sharing of Encrypted
Data. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 107–
120. Springer, Heidelberg (2002)

228 L. Courtès, M.-O. Killijian, and D. Powell

3. Boulkenafed, M., Issarny, V.: AdHocFS: Sharing Files in WLANs. In: Proceed-
ings of the 2nd International Symposium on Network Computing and Applications
(April 2003)

4. Buchegger, S., Le Boudec, J.-Y.: The Effect of Rumor Spreading in Reputation
Systems for Mobile Ad-hoc Networks. In: Proceedings of WiOpt ‘03: Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (March 2003)

5. Buttyán, L., Hubaux, J.-P.: Stimulating Cooperation in Self-Organizing Mobile
Ad Hoc Networks. ACM/Kluwer Mobile Networks and Applications 8(5), 579–592
(2003)

6. Buttyán, L., Hubaux, J.-P.: Enforcing Service Availability in Mobile Ad-Hoc
WANs. In: Proceedings of the First ACM International Symposium on Mobile Ad
Hoc Networking & Computing, pp. 87–96. IEEE CS Press, Los Alamitos (2000)

7. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP Message Format
(RFC 2440). Internet Engineering Task Force (IETF) (November 1998),
http://tools.ietf.org/html/rfc2440

8. Capkun, S., Buttyán, L., Hubaux, J.-P.: Small Worlds in Security Systems an
Analysis of the PGP Certificate Graph. In: Proceedings of the Workshop on New
Security Paradigms, pp. 28–35. ACM Press, New York (2002)

9. Capkun, S., Buttyán, L., Hubaux, J.-P.: Self-Organized Public-Key Management
for Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing 2(1), 52–64
(2003)

10. Chiu, A.: Authentication Mechanisms for ONC RPC (RFC 2695). Internet Engi-
neering Task Force (IETF) (September 1999),
http://tools.ietf.org/html/rfc2695

11. Courtès, L., Hamouda, O., Kaâniche, M., Killijian, M.-O., Powell, D.: Assessment
of Cooperative Backup Strategies for Mobile Devices. Technical Report 06817,
LAAS-CNRS (December 2006)

12. Courtès, L., Killijian, M.-O., Powell, D.: Storage Tradeoffs in a Collaborative
Backup Service for Mobile Devices. In: Proceedings of the Sixth European Depend-
able Computing Conference, pp. 129–138. IEEE CS Press, Los Alamitos (October
2006)

13. Cox, L.P., Murray, C.D., Noble, B.D.: Pastiche: Making Backup Cheap and Easy.
In: Fifth USENIX Symposium on Operating Systems Design and Implementation,
pp. 285–298 (December 2002)

14. Cox, L.P., Noble, B.D.: Samsara: Honor Among Thieves in Peer-to-Peer Storage.
In: Proceedings 19th ACM Symposium on Operating Systems Principles, pp. 120–
132. ACM Press, New York (2003)

15. Dierks, T., Rescorla, E., Teerse, W.: The Transport Layer Security (TLS) Pro-
tocol, Version 1.1 (RFC 4346). Internet Engineering Task Force (IETF) (2006),
http://tools.ietf.org/html/rfc4346

16. Douceur, J.R.: The Sybil Attack. In: Revised Papers from the First International
Workshop on Peer-to-Peer Systems (IPTPS), pp. 251–260. Springer, Heidelberg
(2002)

17. Eisler, M., Chiu, A., Ling, L.: RPCSEC GSS Protocol Specification (RFC 2203).
Internet Engineering Task Force (IETF) (September 1997),
http://tools.ietf.org/html/rfc2203

18. Ellison, C.M., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI
Certificate Theory (RFC 2693). Internet Engineering Task Force (IETF) (Septem-
ber 1999), http://www.ietf.org/rfc/rfc2693.txt

19. Ellison, C.M.: Establishing Identity Without Certification Authorities. In: Pro-
ceedings of the Sixth USENIX Security Symposium, pp. 67–76 (1996)

http://tools.ietf.org/html/rfc2440
http://tools.ietf.org/html/rfc2695
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc2203
http://www.ietf.org/rfc/rfc2693.txt

Security Rationale for a Cooperative Backup Service for Mobile Devices 229

20. Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets. In: Pro-
ceedings of the Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications (SIGCOMM), pp. 27–34 (August 2003)

21. Farrell, S., Cahill, V.: Security Considerations in Space and Delay Tolerant Net-
works. In: Proceedings of the 2nd IEEE International Conference on Space Mission
Challenges for Information Technology, pp. 29–38. IEEE CS Press, Los Alamitos
(2006)

22. Flinn, J., Sinnamohideen, S., Tolia, N., Satyanarayanan, M.: Data Staging on Un-
trusted Surrogates. In: Proceedings of the USENIX Conference on File and Storage
Technologies (FAST) (March 2003)

23. Grothoff, C.: An Excess-Based Economic Model for Resource Allocation in Peer-
to-Peer Networks. Wirtschaftsinformatik 45(3), 285–292 (2003)

24. Harras, K.A., Wittie, M.P., Almeroth, K.C., Belding, E.M.: ParaNets: A Paral-
lel Network Architecture for Challenged Networks. In: Proceedings of the IEEE
Workshop on Mobile Computing Systems and Applications, IEEE Computer So-
ciety Press, Los Alamitos (2007)

25. Josefsson, S., Mavrogiannopoulos, N.: The GNU TLS Library (2006),
http://gnutls.org/

26. Karypidis, A., Lalis, S.: OmniStore: A System for Ubiquitous Personal Storage
Management. In: Proceedings of the Annual IEEE International Conference on Per-
vasive Computing and Communications (PerCom), pp. 136–147. IEEE CS Press,
Los Alamitos (March 2006)

27. Killijian, M.-O., Powell, D., Banâtre, M., Couderc, P., Roudier, Y.: Collaborative
Backup for Dependable Mobile Applications. In: Proceedings of 2nd International
Workshop on Middleware for Pervasive and Ad-Hoc Computing (Middleware 2004),
pp. 146–149. ACM Press, New York (2004)

28. Lai, K., Feldman, M., Chuang, J., Stoica, I.: Incentives for Cooperation in Peer-
to-Peer Networks. In: Proceedings of the Workshop on Economics of Peer-to-Peer
Systems (2003)

29. Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M., Isard, M.: A Cooperative
Internet Backup Scheme. In: Proceedings of the USENIX Annual Technical Con-
ference, pp. 29–42 (June 2003)

30. Marti, S., Garcia-Molina, H.: Identity Crisis: Anonymity vs. Reputation in P2P
Systems. In: IEEE Conference on Peer-to-Peer Computing, pp. 134–141. IEEE CS
Press, Los Alamitos (September 2003)

31. Mavrogiannopoulos, N.: Using OpenPGP Keys for TLS Authentication (IETF In-
ternet Draft). In: Internet Engineering Task Force (IETF) (July 2006), http://
www.ietf.org/internet-drafts/draft-ietf-tls-openpgp-keys-11.txt

32. Merkle, R.C.: Protocols for Public Key Cryptosystems. In: Proceedings of the IEEE
Symposium on Security and Privacy, pp. 122–134. IEEE Computer Society Press,
Los Alamitos (1980)

33. Michiardi, P., Molva, R.: CORE: A Collaborative Reputation Mechanism to En-
force Node Cooperation in Mobile Ad Hoc Networks. In: Proceedings of the Sixth
IFIP TC6/TC11 Joint Conference on Communications and Multimedia Security,
pp. 107–121. Kluwer Academic Publishers, Dordrecht (2002)

34. Milgram, S.: The Small World Problem. Psychology Today 2, 60–67 (1967)

35. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control, PhD Thesis, Johns Hopkins University, Baltimore, MA,
USA, (May 2006)

http://gnutls.org/
http://www.ietf.org/internet-drafts/draft-ietf-tls-openpgp-keys-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-openpgp-keys-11.txt

230 L. Courtès, M.-O. Killijian, and D. Powell

36. Montenegro, G., Castelluccia, C.: Statistically Unique and Cryptographically Ver-
ifiable (SUCV) Identifiers and Addresses. In: Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS) (2002)

37. Quinlan, S., Dorward, S.: Venti: A New Approach to Archival Storage. In: Pro-
ceedings of the First USENIX Conference on File and Storage Technologies, pp.
89–101 (2002)

38. Mizanur Rahman, Sk.Md., Inomata, A., Okamoto, T., Mambo, M., Okamoto, E.:
Anonymous Secure Communication in Wireless Mobile Ad-hoc Networks. In: Pro-
ceedings of the First International Conference on Ubiquitous Convergence Tech-
nology, pp. 131–140. Springer, Heidelberg (2006)

39. Sailhan, F., Issarny, V.: Scalable Service Discovery for MANET. In: Proceedings of
the IEEE International Conference on Pervasive Computing and Communication,
IEEE Computer Society Press, Los Alamitos (2005)

40. Srinivasan, R.: RPC: Remote Procedure Call Protocol Specification, Version 2
(RFC 1831). In: Internet Engineering Task Force (IETF) (August 1995),
http://tools.ietf.org/html/rfc1831

41. Yin, L., Cao, G.: Supporting Cooperative Caching in Ad Hoc Networks. IEEE
Transactions on Mobile Computing 5(1), 77–89 (2006)

42. Zhang, Z.: Routing in Intermittently Connected Mobile Ad Hoc Networks and De-
lay Tolerant Networks: Overview and Challenges. IEEE Communications Surveys
& Tutorials 8, 24–37 (2006)

http://tools.ietf.org/html/rfc1831

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 231 – 232, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Do You Know… How to Analyze and Share Results
from Dependability Evaluation Experiments?

Marco Vieira and Henrique Madeira

CISUC – University of Coimbra
3030 Coimbra, Portugal

{mvieira,henrique}@dei.uc.pt

Abstract. In this tutorial we explore the use of data warehousing and OLAP
(On-Line Analytical Processing) technologies to analyze the results from de-
pendability evaluation experiments. The tutorial, intended for researchers work-
ing in experimental dependability evaluation, includes a demonstration of the
use of these technologies in a concrete example of experimental dependability
evaluation.

Keywords: Experimental dependability evaluation, data warehousing, OLAP.

Synopsis

It is well known that the evaluation of dependability features in computer systems is a
complex task. Traditional techniques based on analytical and simulation models have
to be complemented with experimental approaches based on measurements taken
from real systems and prototypes. These experimental techniques, including fault
injection, robustness testing, and field measurements, have been extensively used to
evaluate specific fault tolerance mechanisms, validate robustness of software compo-
nents, or to assess the general impact of faults in systems. However, in spite of the
effort put on the development of adequate tools and the intensive research devoted to
the mitigation of key problems such as experiment representativeness, intrusiveness
and portability of tools, two important questions remain largely unanswered:

– How to analyze the usually large amount of raw data produced in dependability
evaluation experiments, especially when the analysis is complex and have to take
into account many aspects of the experimental setup (e.g., target systems, configu-
rations, workload and programs, faultload, diversity of measures, etc)?

– How to compare results from different experiments or results of similar experi-
ments across different systems if the tools, data formats, and the setup details are
different and, often, incompatible?

Data warehousing refers to “a collection of decision support technologies aimed at
enabling the knowledge worker (executive, manager, or analyst) to make better and
faster decisions” [1]. A data warehouse is a global repository that stores large
amounts of data that has been extracted and integrated from heterogeneous systems
(operational or legacy systems). OLAP (On-Line Analytical Processing) is the

232 M. Vieira and H. Madeira

technique of performing complex analysis over the information stored in a data ware-
house [2]. The data warehouse coupled with OLAP enable decision makers to crea-
tively analyze and understand business trends since it transforms operational data into
strategic decision making information.

The goal of this tutorial is to explore the use of multidimensional analysis and data
warehousing & OLAP (On-Line Analytical Processing) technology, to solve the prob-
lem of analyzing, sharing, and cross-exploiting results from dependability evaluation
experiments. The central idea is to collect the raw data produced in dependability
evaluation experiments and store it in a multidimensional data structure (data ware-
house). The data analysis is done through the use of commercially available OLAP
tools such as the ones traditionally used in business decision support analysis [2] (e.g.,
Discoverer® from Oracle). That is, instead of following the usual trend of adding data
analysis features to fault injectors and robustness testing tools, there is a clear separa-
tion between the experimental setup (target specific) and the result analysis setup
(general in our approach). Existing tools and experimental setups are used as they are
and just export the data obtained in the experiments to a data warehouse, where all the
analysis and cross-exploitation of results can be done in an efficient and general way.

The data warehousing approach applied to the analysis of data obtained from de-
pendability evaluation experiments can be used in different scenarios:

– At research team level, to perform the analysis of experimental data in a very
efficient way. At the same time, both the data and the OLAP tool needed to ana-
lyze the data can be available at the web, allowing a very efficient dissemination
of the research results produced by the team.

– At project level (assuming that a project includes several research teams), to allow
sharing and cross-exploitation of results obtained by the different teams.

– World wide in the form of common repositories to store and share experimental
dependability evaluation results. In fact this is probably the only way to change
the current situation, in which many teams are performing experimental depend-
ability evaluation (particularly experiments based on fault injection) and there is
no results currently available at the web. The data warehousing approach can
change drastically this situation, as it proposes a common format to share the data
(the multidimensional model in the form of a star scheme) and a standard type of
tool to analyze the results (the OLAP tools) stored in the data warehouses.

The tutorial will start by the problem presentation followed by the discussion of some
introductory concepts on building data warehouses, including the following key top-
ics: the steps; the star model; the process of extraction transformation and loading
data. Afterwards, we will focus on how to use data warehouses and OLAP to analyze
dependability evaluation data. A case study will be presented and discussed before the
tutorial closure.

References

1. Chauduri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Record 26(1), 65–74 (1997)

2. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling, 2nd edn. Wiley & Sons, Inc., Chichester (2002)

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 233–234, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Security Patterns and Secure Systems Design

Eduardo B. Fernandez

Dept. of Computer Science and Eng.,
Florida Atlantic University, Boca Raton, FL 33431, USA

ed@cse.fau.edu

Abstract. Analysis and design patterns are well established to build high-
quality object-oriented software. Patterns combine experience and good
practices to develop basic models that can be used for new designs. Security
patterns join the extensive knowledge accumulated about security with the
structure provided by patterns to provide guidelines for secure system design
and evaluation. They are being adopted by companies such as IBM, Sun, and
Microsoft. We show the anatomy of a security pattern, a variety of them, and
their use in the construction of secure systems. These patterns include
Authentication, Authorization, Role-based Access Control, Firewalls, Web
Services Security (SAML, XACML, XML Firewall), and others. We apply
these patterns through a secure system development method based on a
hierarchical architecture whose layers define the scope of each security
mechanism. First, the possible attacks are considered from an analysis of use
cases. Then the rights of the users are defined from the use cases using a Role-
Based Access Control (RBAC) or other security model. The attacks are used to
define the policies that could stop them. The rights are reflected in the
conceptual class model. We then define additional security constraints that
apply to distribution, interfaces, and components. The patterns are shown using
UML models and some examples are taken from my book “Security Patterns”
(Wiley 2006).

1 Session Learning Objectives

Attendees should be able to understand the general concept of security patterns as
solutions to security problems. We show how the pattern template focuses on specific
aspects of security and on the use of the pattern.

We also see how to use security patterns as guidelines to build secure systems. A
complete methodology will be presented with some examples.

Finally, we show how to use security patterns to describe a security mechanism.
We give several examples of security patterns.

2 Prerequisites

Basic knowledge of UML and object-oriented design is assumed. Understanding of
basic security concepts is also needed.

234 E.B. Fernandez

3 Outline

1. Introduction---Motivation, basic concepts. The context for security. Attacks.
2. The design of secure systems--- Object-oriented design, UML, and patterns, need

for good software engineering. Security principles. Security patterns. Standards.
3. Anatomy of a security pattern.
4. Security models and their patterns---policies, access matrix, multilevel models,

RBAC
5. Defining authorizations from use cases---nonfunctional aspects of use cases,

RBAC and security policies
6. Firewall, IDS, and operating system patterns
7. Authorized conceptual model
8. Secure system architectures---effect of distribution and user interfaces
9. Web application servers and components---mapping RBAC to components, J2EE

and .NET
10. Patterns for web services: SAML, XACML, Liberty Alliance, WS-Security.

Comparing standards through patterns. Application and XML firewalls
11. Coordination across levels---mapping of authorizations across architectural levels
12. Conclusions---the future

BAR—Where Distributed Computing Meets

Game Theory

Lorenzo Alvisi

Laboratory for Advanced Systems Research (LASR)
Department of Computer Sciences
The University of Texas at Austin

lorenzo@cs.utexas.edu

This tutorial describes a general approach for building cooperative services that
span multiple administrative domains (MADs). MAD systems are attractive be-
cause their diffused control structure may yield services that are potentially less
costly and more democratic than their more centralized counterparts. Unfortu-
nately, they are also particularly problematic from a dependability standpoint
as they challenge the traditional distinction between correct and faulty nodes.

Nodes in a MAD system can, as always, deviate from their specification be-
cause they are broken, on account of bugs, errors in software configuration, or
even malicious attacks. But MAD systems add a new dimension: without a
central administrator to ensure that all unbroken nodes follow faithfully their
assigned protocol, nodes may deviate from their specification also because they
are selfish and are intent on maximizing their own utility. BFT handles the first
class of deviations well. However, the Byzantine model classifies all deviations
as faults and requires a bound on the number of faults in the system; this bound
is not tenable in MAD systems where all nodes may benefit from selfish behav-
ior and be motivated to deviate from the protocol. Models based on traditional
game theory only account for rational behavior and are therefore brittle: they
handle the second class of selfish deviations, but may be vulnerable to arbitrary
disruptions if even a single node is broken and deviates from expected rational
behavior.

The challenge in developing a solid foundation for constructing MAD services
is then (at least) threefold: (1) to develop a model for MAD services in which
it is possible to reason and prove properties of MAD services; (2) to understand
how to simplify the development of MAD services under the new model, (3) to
demonstrate that MAD services developed under this model can be practical by
building and deploying useful applications.

This tutorial reports on the initial progress that my colleagues—Mike Dahlin,
Allen Clement, Harry Li, Jean-Phippe Martin, Jeff Napper, Edmund Wong—and
I have made in addressing these issues:

– It will introduce BAR, a new failure model named after the initial of the
three classes of nodes (Byzantine, Altruistic, and Rational) that it explicitly
considers. Byzantine nodes can deviate arbitrarily from their specification,

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, pp. 235–236, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

236 L. Alvisi

even if doing so is against their interest. Altruistic nodes follow their specifi-
cation faithfully, without consideration of their self interest. Rational nodes
behave selfishly and deviate from a given protocol if doing so improves their
own utility. We will discuss how BAR can be used to establish a formally
sound foundation for modeling realistic MAD services.

– It will present BAR-tolerant protocols for terminating reliable broadcast,
state machine replication, and gossip-based multicast

– It will discuss the design and implementation of two BAR-tolerant peer-
to-peer systems: BAR-B, a cooperative backup service, and FlightPath, a
streaming media application. Both systems provably continue to maintain
their properties despite the absence of altruistic peers.

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, p. 237, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scaling Dependability and Security
in Ad Hoc Networks

Rogério de Lemos

Computing Laboratory
University of Kent, UK

r.delemos@kent.ac.uk

Abstract. The increasing size and complexity of the next generation of large
distributed systems will require radical new approaches for guaranteeing certain
levels of dependability and security. Current solutions might become brittle in
context of new applications, such as pervasive computing, in which there is a
large number of components with dynamic interdependencies between them.
The inherent complexity of these future systems due to heterogeneity,
decentralisation, and emergent technologies also demand scalable and robust
solutions. An example of such emergent technologies is ad hoc networks, which
are self-configuring networks that enable the connection of thousands of
devices in arbitrary topologies. The objective of the panel is to discuss the
challenges and the potential solutions when building dependable and secure
applications in the context of ad hoc networks. This panel has been organised as
a joint event between the Sixth International Conference on Ad-Hoc Networks
and Wireless (Ad Hoc NOW 2007) and the Third Latin American Symposium
on Dependable Computing (LADC 2007), which are two co-located events of
the Mexican International Conference in Computer Science (ENC 2007).

A. Bondavalli, F. Brasileiro, and S. Rajsbaum (Eds.): LADC 2007, LNCS 4746, p. 238 2007.
© Springer-Verlag Berlin Heidelberg 2007

Assessing, Measuring, and Benchmarking
Dependability and Resilience

Henrique Madeira

CISUC - University of Coimbra
3030 Coimbra, Portugal
henrique@dei.uc.pt

Cost pressure, short time to market, and increased complexity are responsible for an
evident increase of the failure rate of computing systems, while the cost of failures is
growing rapidly, as a result of an unprecedented degree of dependence of our society
on computing systems. The combination of these factors has created a dependability
and security gap that is often perceived by users as a lack of trustworthiness in
computer applications, but that is in fact undermining the network and service
infrastructures that constitute the very core of the knowledge-based society.

Assessing resilience is the key stone to improving trustworthiness in computer
systems and components. "If you cannot measure something, you cannot really
understand it" (Lord Kelvin) - a well-known aphorism which we use to emphasize the
need of effective and accurate methods to assess and measure dependability and
security in order to understand current risks of network and service infrastructures.

Although considerable efforts have been made, measuring dependability and
resilience is still a very difficult problem, especially when the goal is to measure
resilience in a standard and comparable way. This panel will discuss the main issues
and recent developments on assessing, measuring, and benchmarking resilience, as
seen by leading specialists in the field.

Author Index

Alexandersson, Ruben 57
Alvisi, Lorenzo 235
Ambrosio, Ana Maria 170
Arlat, Jean 3

Baldoni, Roberto 38
Belli, Fevzi 95
Brito, Patrick Henrique S. 75

Cortiñas, Roberto 25
Costa, Victor Franco 142
Courtès, Ludovic 212

de Lemos, Rogério 75, 237
de Oliveira, Talmai Brandão 142
Duarte Jr., Elias Procópio 7
Durães, João 179

Eminov, Mubariz 95

Fernandez, Eduardo B. 233
Fonseca, José 198

Gökçe, Nida 95
Greve, Fab́ıola 142

Khelil, Abdelmajid 123
Killijian, Marc-Olivier 212
Koopman, Philip 1

Lafuente, Alberto 25
Larrea, Mikel 25
Lúıs, Bruno Miguel 111

Madeira, Henrique 179, 198, 231
Martins, Eliane 75, 170, 179
Mattiello-Francisco, Fátima 170
Moraes, Regina 179
Muranho, João 160

Öhman, Peter 57

Powell, David 212
Prata, Paula 160

Ribeiro, José Carlos Bregieiro 111
Rubira, Cećılia M. Fischer 75

Santiago Jr., Valdivino A. 170
Schroeder, Jonatan 7
Silva, João Gabriel 160
Silva, Wendell P. 170
Soraluze, Iratxe 25
Suri, Neeraj 123

Tucci Piergiovanni, Sara 38

Vieira, Marco 198, 231

Wieland, Joachim 25

Zenha-Rela, Mário 111, 160

	Title Page
	Foreword
	Preface
	Organizing Committee
	Table of Contents
	Reliability, Safety, and Security in Everyday Embedded Systems (Extended Abstract)
	Nanoscale Technologies: Prospect or Hazard to Dependable and Secure Computing?
	Introduction
	Chips Featuring Massively Defective Devices
	Transient Faults in Operation
	Hardware Vulnerabilities and Security Threats
	Towards Resilient Multicore Processor Chips?
	References

	Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation
	Introduction
	The Proposed Algorithm
	Algorithm Specification
	Edge Evaluation: Path Redundancy and Distance
	Example Executions

	Proofs
	Correctness
	Number and Size of Update Messages
	Edge Selection Complexity
	Latency

	Implementation and Experimental Results
	Related Work
	Conclusion
	References

	On the Implementation of Communication-Optimal Failure Detectors
	Introduction
	SystemModel
	Reliable Broadcast

	On Communication Optimality
	Communication-Optimal Implementation of \dP
	Correctness Proof

	Performance Evaluation
	Conclusion
	References

	Connectivity in Eventually Quiescent Dynamic Distributed Systems
	Introduction
	System Model and Basic Definitions
	The Overlay Connectivity Problem
	Eventual Strong Connectivity
	Overlay Progress
	Impossibility of Avoiding Overlay Partitions

	The Protocol
	Protocol Description
	Protocol Assumptions and Correctness

	Experimental Evaluation on the Convergence to a $k-ary$ Tree
	Related Work
	Concluding Remarks
	References

	Implementing Fault Tolerance Using Aspect Oriented Programming
	Introduction
	Aspect Oriented Programming
	Defining the Representative Set
	Incremental Recovery Cache
	Time Redundant Execution
	Recovery Blocks
	Runtime Checks
	Control Flow Checking

	AOP Language Evaluation
	AOP Language Concepts
	Evaluating AspectC++
	AspectC++ Extensions

	AspectC++ Implementations
	Incremental Recovery Cache
	Time Redundant Execution
	Runtime Checks
	Recovery Blocks
	Control Flow Checking

	Related Work
	Conclusion
	References

	Architecture-Centric Fault Tolerance with Exception Handling
	Introduction
	Related Work
	Background
	iFTE: Idealised Fault-Tolerant Architectural Element
	Formal Anotation and Verification

	Detailing the iFTE
	Structure of the iFTE
	Detailed Execution Scenarios

	Formal Specification and Verification of the iFTE
	Formal Specification of the iFTE
	Verification Process
	Verified Properties of Interest

	Test Cases Generation
	Case Study: Mining Control System
	Software Architecture Specification
	Software Architecture Verification
	Test Cases Generation
	Case Study Evaluation

	Conclusions and Future Work
	References

	Coverage-Oriented, Prioritized Testing – A Fuzzy Clustering Approach and Case Study
	Introduction: Motivation and Related Work
	Modeling and Clustering
	Event Sequence Graphs for Test Generation
	Fuzzy Cluster Analysis

	Prioritized ESG-Based Testing
	A Case Study
	Conclusions and Future Work
	References

	Error Propagation Monitoring on Windows Mobile-Based Devices
	Introduction
	Background
	State and Notifications Broker Overview
	Framework Description
	Faultload Database
	Input Generation and Fault Injection Module
	Postcondition Checker
	Execution Manager

	Experimental Observations
	Targets and Methodology
	Results and Observations

	Conclusions and Future Work
	References

	Gossiping: Adaptive and Reliable Broadcasting in MANETs
	Introduction
	Preliminaries
	System Model and Fault Model
	Requirements

	Related Work
	Objectives
	Modeling and Adaptation of Gossiping
	The Gossiping Protocol
	Epidemic Model for Gossiping
	Adaptation of Gossiping

	Evaluation of Reliable Gossiping
	PerformanceMetrics
	Impact of Node Density and Node Mobility
	Impact of Transmission Range
	Comparison of Reliable Gossiping to the Optimal Case
	Comparison to RelatedWork

	Conclusions
	References

	On the Behavior of Broadcasting Protocols for MANETs Under Omission Faults Scenarios
	Introduction
	BroadcastinginMANETs
	Description of Chosen Protocols

	Performance Evaluation
	Simulation Model
	Simulation Results
	Lessons Learned

	Conclusion
	References

	Failure Boundedness in Discrete Applications
	Introduction
	System Model
	Fail-Boundedness and Fault-Tolerance

	Experimental Setup
	The Control Application
	System Behavior Classification
	The Experimental Testbed

	Experimental Observations and Discussion
	Conclusion
	References

	Designing Fault Injection Experiments Using State-Based Model to Test a Space Software
	Introduction
	Overview of the SWPDC
	Test Environment
	CoFI Testing Methodology Applied to the SWPDC Software
	Creating the SWPDC Models

	The Fault Injection Experiments
	Conclusions
	References

	Component-Based Software Certification Based on Experimental Risk Assessment
	Introduction
	Software Certification and Risk Assessment: Survey and Related Work
	Software Certification
	Software Risk Assessment

	Software Certification Using Experimental Risk Assessment
	Quality Model and Evaluation Process

	Case Study
	Obtaining the Measurements
	Compare with the Established Criteria and Evaluate the Results

	Conclusion and Future Work
	References

	Integrated Intrusion Detection in Databases
	Introduction
	Intrusion Detection Approach
	Database Transactions Profiles
	Learning the Authorized Profiles
	Detecting Intrusions

	The Intrusion Detection Tool
	Tool Utilization Examples
	Conclusions
	References

	Security Rationale for a Cooperative Backup Service for Mobile Devices
	Introduction
	MoSAICOverview
	Security Context and Motivations
	Threats to Confidentiality and Privacy
	Threats to Integrity and Authenticity
	Threats to Availability
	Discussion

	Architectural Overview of the Storage Layer
	Leveraging Cooperation
	Design Approach
	Providing Secure and Self-Managed Device Designation
	Ensuring Communications Integrity
	Thwarting Sybil Attac
	Allowing for a Wide Range of Cooperation Policies

	Implementation Considerations
	Protocol Choice
	Prototype Implementation
	On-Going and Future Work

	Related Work
	Conclusion
	References

	Do You Know… How to Analyze and Share Results from Dependability Evaluation Experiments?
	References

	Security Patterns and Secure Systems Design
	Session Learning Objectives
	Prerequisites
	Outline

	BAR—Where Distributed Computing Meets Game Theory
	Scaling Dependability and Security in Ad Hoc Networks
	Assessing, Measuring, and Benchmarking Dependability and Resilience
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

